帳號:guest(3.133.161.249)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李韶郁
作者(外文):Lee, Shao-Yu
論文名稱(中文):白色念珠菌轉錄因子Sfp1調控抗氧化能力之研究
論文名稱(外文):Candida albicans Sfp1 participates in the regulation of multiple antioxidative systems
指導教授(中文):藍忠昱
指導教授(外文):Lan, Chung Yu
口試委員(中文):高茂傑
張壯榮
口試委員(外文):Kao, Mou Chieh
Chang, Chuang Rung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:104080565
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:96
中文關鍵詞:白色念珠菌抗氧化能力自由基抗藥性
外文關鍵詞:Candida albicansantioxidative capacityFree radicalROSdrug resistance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
白色念珠菌為人體中最致命的真菌病原菌之一,每年有高達四十萬人遭受白色念珠菌的系統性感染,而此類感染可造成高達50%的死亡率。相較於細菌,針對白色念珠菌致病機制的研究仍極為不足。為了在臨床上發展更好的治療策略,並且幫助新型抗真菌藥物的開發,全面了解白色念珠菌致病機制極為重要。根據其他研究,抗氧化能力和白色念珠菌的致病能力息息相關。例如在白色念珠菌感染人體及治療的過程中,免疫細胞 (例如:巨噬細胞與嗜中性球)及某些抗真菌藥物會藉由產生自由基達到殺菌的效果。因此,白色念珠菌的抗氧化能力對菌體是否能在免疫系統和藥物的治療下存活扮演關鍵性角色。本篇研究主要在於探討轉錄因子Sfp1之作用,發現Sfp1對於白色念珠菌的抗氧化能力具有顯著的調控關係。將SFP1基因剃除後會提升菌株負責傳遞氧化壓力訊號的Hog1激酶的磷酸化程度,並且使另一轉錄因子Cap1的基因表現量增加。此外,將SFP1基因剃除後可顯著提升抗氧化基因的表現量、總抗氧化能力、SOD酵素及麩胱甘肽(glutathione)系統的活性。由於許多抗真菌藥物利用產生自由基達到殺菌功能,此篇研究也進一步探討Sfp1是否和抗藥性有所關聯。綜合以上,本研究提出前所未知的抗氧化能力調控因子,並進一步了解白色念珠菌的抗氧化機制。
Candida albicans is a pathogenic yeast that normally inhabits at skin and mucosa. Due to the limited classes of antifungal drugs available, and the increasing numbers of immunocompromised population, C. albicans has become one of the most prevalent infectious fungi in humans with high mortality rates. During infection process and therapeutics, C. albicans encounters the immune cells and antifungal drugs. Many of them can produce reactive oxygen species (ROS) to kill C. albicans. Therefore, antioxidative capacity is important for survival and pathogenesis of C. albicans. In this study, we characterized the zinc finger transcription factor Sfp1 in the oxidative stress response of C. albicans. The sfp1-deleted mutant possesses active oxidative stress response with a high CAP1 expression and phosphorylated Hog1. Moreover, the sfp1-deleted mutant exhibits high expression levels of antioxidant genes in response to oxidative stresses. Noticeably, the sfp1-deleted mutant also shows a higher total antioxidant capacity, glutathione content, glutathione peroxidase and Sod enzyme activity compared to wild type. In addition, the sfp1-deleted mutant is resistant to ROS-generating antifungal drugs and has lower ROS accumulation upon the treatment, implying that Sfp1 also plays important roles in antifungal drug resistance. Together, our findings provide a previously unknown mechanism for C. albicans antioxidative activity and allow us to further understand the complex regulatory machinery in the context of infection and therapeutics.
Chapter 1. Introduction...7
Chapter 2. Materials and Methods...20
Chapter 3. Results...32
Chapter 4. Discussion...48
Chapter 5. Future perspective...56
Chapter 6. References...58
[1] C. Boos, P. Kujath, H.P. Bruch, [Intra-abdominal mycoses], Mycoses, 48 Suppl 1 (2005) 22-26.
[2] L.G. Miller, R.A. Hajjeh, J.E. Edwards, Jr., Estimating the cost of nosocomial candidemia in the united states, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 32 (2001) 1110.
[3] W.H. Sheng, J.T. Wang, M.S. Lin, S.C. Chang, Risk factors affecting in-hospital mortality in patients with nosocomial infections, Journal of the Formosan Medical Association = Taiwan yi zhi, 106 (2007) 110-118.
[4] 台灣院內感染監視資訊系統 2016年第二季 監視報告, (2016).
[5] H. Chibana, N. Oka, H. Nakayama, T. Aoyama, B.B. Magee, P.T. Magee, Y. Mikami, Sequence finishing and gene mapping for Candida albicans chromosome 7 and syntenic analysis against the Saccharomyces cerevisiae genome, Genetics, 170 (2005) 1525-1537.
[6] S. Strollo, M.S. Lionakis, J. Adjemian, C.A. Steiner, D.R. Prevots, Epidemiology of Hospitalizations Associated with Invasive Candidiasis, United States, 2002-20121, Emerging infectious diseases, 23 (2016) 7-13.
[7] H. Wisplinghoff, T. Bischoff, S.M. Tallent, H. Seifert, R.P. Wenzel, M.B. Edmond, Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 39 (2004) 309-317.
[8] A.d.S. Dantas, A. Day, M. Ikeh, I. Kos, B. Achan, J. Quinn, Oxidative stress responses in the human fungal pathogen, Candida albicans, Biomolecules, 5 (2015) 142-165.
[9] A.J.P. Brown, S. Budge, D. Kaloriti, A. Tillmann, M.D. Jacobsen, Z. Yin, I.V. Ene, I. Bohovych, D. Sandai, S. Kastora, J. Potrykus, E.R. Ballou, D.S. Childers, S. Shahana, M.D. Leach, Stress adaptation in a pathogenic fungus, The Journal of Experimental Biology, 217 (2014) 144-155.
[10] F.L. Mayer, D. Wilson, B. Hube, Candida albicans pathogenicity mechanisms, Virulence, 4 (2013) 119-128.
[11] R.A. Calderone, P.C. Braun, Adherence and receptor relationships of Candida albicans, Microbiological Reviews, 55 (1991) 1-20.
[12] C. Alberti-Segui, A.J. Morales, H. Xing, M.M. Kessler, D.A. Willins, K.G. Weinstock, G. Cottarel, K. Fechtel, B. Rogers, Identification of potential cell-surface proteins in Candida albicans and investigation of the role of a putative cell-surface glycosidase in adhesion and virulence, Yeast, 21 (2004) 285-302.
[13] H.J. Lo, J.R. Kohler, B. DiDomenico, D. Loebenberg, A. Cacciapuoti, G.R. Fink, Nonfilamentous C. albicans mutants are avirulent, Cell, 90 (1997) 939-949.
[14] J. Chandra, D.M. Kuhn, P.K. Mukherjee, L.L. Hoyer, T. McCormick, M.A. Ghannoum, Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance, J Bacteriol, 183 (2001) 5385-5394.
[15] S. Fanning, A.P. Mitchell, Fungal biofilms, PLoS Pathog, 8 (2012) e1002585.
[16] N. Delattin, B.P.A. Cammue, K. Thevissen, Reactive oxygen species-inducing antifungal agents and their activity against fungal biofilms, Future Medicinal Chemistry, 6 (2014) 77-90.
[17] Z. Xie, A. Thompson, T. Sobue, H. Kashleva, H. Xu, J. Vasilakos, A. Dongari-Bagtzoglou, Candida albicans Biofilms Do Not Trigger Reactive Oxygen Species and Evade Neutrophil Killing, The Journal of Infectious Diseases, 206 (2012) 1936-1945.
[18] C.J. Nobile, E.P. Fox, J.E. Nett, T.R. Sorrells, Q.M. Mitrovich, A.D. Hernday, B.B. Tuch, D.R. Andes, A.D. Johnson, A recently evolved transcriptional network controls biofilm development in Candida albicans, Cell, 148 (2012) 126-138.
[19] B. Wachtler, F. Citiulo, N. Jablonowski, S. Forster, F. Dalle, M. Schaller, D. Wilson, B. Hube, Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process, PLoS One, 7 (2012) e36952.
[20] J.R. Naglik, S.J. Challacombe, B. Hube, Candida albicans secreted aspartyl proteinases in virulence and pathogenesis, Microbiology and molecular …, (2003).
[21] M.C. Lorenz, J.A. Bender, G.R. Fink, Transcriptional response of Candida albicans upon internalization by macrophages, Eukaryot Cell, 3 (2004) 1076-1087.
[22] B.M. Babior, R.S. Kipnes, J.T. Curnutte, Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent, The Journal of clinical investigation, 52 (1973) 741-744.
[23] F. Rossi, V. Della Bianca, P. de Togni, Mechanisms and functions of the oxygen radicals producing respiration of phagocytes, Comparative immunology, microbiology and infectious diseases, 8 (1985) 187-204.
[24] B. D'Autreaux, M.B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nat Rev Mol Cell Biol, 8 (2007) 813-824.
[25] S.M. Holland, Chronic Granulomatous Disease, Clinical Reviews in Allergy & Immunology, 38 (2010) 3-10.
[26] A. Bink, D. Vandenbosch, T. Coenye, H. Nelis, B.P.A. Cammue, K. Thevissen, Superoxide Dismutases Are Involved in Candida albicans Biofilm Persistence against Miconazole, Antimicrobial Agents and Chemotherapy, 55 (2011) 4033-4037.
[27] B. Hao, S. Cheng, C.J. Clancy, H.M. Nguyen, Caspofungin kills Candida albicans by causing both cellular apoptosis and necrosis, Antimicrobial agents and chemotherapy, 57 (2012) 326-332.
[28] A.C. Mesa-Arango, N. Trevijano-Contador, E. Roman, R. Sanchez-Fresneda, C. Casas, E. Herrero, J.C. Arguelles, J. Pla, M. Cuenca-Estrella, O. Zaragoza, The Production of Reactive Oxygen Species Is a Universal Action Mechanism of Amphotericin B against Pathogenic Yeasts and Contributes to the Fungicidal Effect of This Drug, Antimicrobial Agents and Chemotherapy, 58 (2014) 6627-6638.
[29] G.Y. Lin, H.F. Chen, Y.P. Xue, Y.C. Yeh, C.L. Chen, M.S. Liu, W.C. Cheng, C.Y. Lan, The Antimicrobial Peptides P-113Du and P-113Tri Function against Candida albicans, Antimicrob Agents Chemother, 60 (2016) 6369-6373.
[30] T.A. Missall, J.K. Lodge, J.E. McEwen, Mechanisms of resistance to oxidative and nitrosative stress: implications for fungal survival in mammalian hosts, Eukaryot Cell, 3 (2004) 835-846.
[31] R.A. Monge, E. Román, C. Nombela, J. Pla, The MAP kinase signal transduction network in Candida albicans, Microbiology (Reading, England), 152 (2006) 905-912.
[32] D.A. Smith, S. Nicholls, B.A. Morgan, A.J. Brown, J. Quinn, A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans, Molecular biology of the cell, 15 (2004) 4179-4190.
[33] D.M. Arana, R. Alonso‐Monge, C. Du, R. Calderone, J. Pla, Differential susceptibility of mitogen‐activated protein kinase pathway mutants to oxidative‐mediated killing by phagocytes in the fungal pathogen Candida albicans, Cellular Microbiology, 9 (2007) 1647-1659.
[34] R. Alonso-Monge, F. Navarro-Garcia, G. Molero, R. Diez-Orejas, M. Gustin, J. Pla, M. Sanchez, C. Nombela, Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans, J Bacteriol, 181 (1999) 3058-3068.
[35] W.S. Moye-Rowley, Regulation of the Transcriptional Response to Oxidative Stress in Fungi: Similarities and Differences, Eukaryot Cell, 2 (2003) 381-389.
[36] M.J. Patterson, C.G. McKenzie, D.A. Smith, A. da Silva Dantas, S. Sherston, E.A. Veal, B.A. Morgan, D.M. MacCallum, L.-P.P. Erwig, J. Quinn, Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape, Antioxidants & redox signaling, 19 (2013) 2244-2260.
[37] Y. Wang, Y.-Y.Y. Cao, X.-M.M. Jia, Y.-B.B. Cao, P.-H.H. Gao, X.-P.P. Fu, K. Ying, W.-S.S. Chen, Y.-Y.Y. Jiang, Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans, Free radical biology & medicine, 40 (2006) 1201-1209.
[38] S. Znaidi, K.S. Barker, S. Weber, A.M. Alarco, T.T. Liu, G. Boucher, P.D. Rogers, M. Raymond, Identification of the Candida albicans Cap1p regulon, Eukaryot Cell, 8 (2009) 806-820.
[39] C. Jain, K. Pastor, A.Y. Gonzalez, M.C. Lorenz, R.P. Rao, The role of Candida albicans AP-1 protein against host derived ROS in in vivo models of infection, Virulence, 4 (2013) 67-76.
[40] V. Manfredini, V. Duarte Martins, C. Ruaro Peralba Mdo, M. Silveira Benfato, Adaptative response to enhanced basal oxidative damage in sod mutants from Saccharomyces cerevisiae, Molecular and cellular biochemistry, 276 (2005) 175-181.
[41] C.N. Broxton, V.C. Culotta, SOD Enzymes and Microbial Pathogens: Surviving the Oxidative Storm of Infection, PLOS Pathogens, 12 (2016).
[42] N. Chauhan, J.-P.P. Latge, R. Calderone, Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus, Nature reviews. Microbiology, 4 (2006) 435-444.
[43] C.-S.S. Hwang, G.-e.E. Rhie, J.-H.H. Oh, W.-K.K. Huh, H.-S.S. Yim, S.-O.O. Kang, Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence, Microbiology (Reading, England), 148 (2002) 3705-3713.
[44] M. Martchenko, A.M. Alarco, D. Harcus, M. Whiteway, Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene, Mol Biol Cell, 15 (2004) 456-467.
[45] K. Brucker, A. Bink, E. Meert, B.P.A. Cammue, K. Thevissen, Potentiation of Antibiofilm Activity of Amphotericin B by Superoxide Dismutase Inhibition, Oxidative Medicine and Cellular Longevity, 2013 (2013) 1-7.
[46] Y. Nakagawa, K. Koide, K. Watanabe, Y. Morita, I. Mizuguchi, T. Akashi, The expression of the pathogenic yeast Candida albicans catalase gene in response to hydrogen peroxide, Microbiology and immunology, 43 (1999) 645-651.
[47] C. Fradin, P. De Groot, D. MacCallum, M. Schaller, F. Klis, F.C. Odds, B. Hube, Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood, Mol Microbiol, 56 (2005) 397-415.
[48] D.R. Wysong, L. Christin, A.M. Sugar, P.W. Robbins, R.D. Diamond, Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene, Infect Immun, 66 (1998) 1953-1961.
[49] Y. Nakagawa, T. Kanbe, I. Mizuguchi, Disruption of the human pathogenic yeast Candida albicans catalase gene decreases survival in mouse-model infection and elevates susceptibility to higher temperature and to detergents, Microbiol Immunol, 47 (2003) 395-403.
[50] E. Roman, D. Prieto, R. Martin, I. Correia, A.C. Mesa Arango, R. Alonso-Monge, O. Zaragoza, J. Pla, Role of catalase overproduction in drug resistance and virulence in Candida albicans, Future microbiology, (2016).
[51] M.J. Penninckx, An overview on glutathione in Saccharomyces versus non-conventional yeasts, FEMS Yeast Res, 2 (2002) 295-305.
[52] A. Garcerá, C. Casas, E. Herrero, Expression of Candida albicans glutathione transferases is induced inside phagocytes and upon diverse environmental stresses, FEMS yeast research, 10 (2010) 422-431.
[53] P. Miramón, C. Dunker, L. Kasper, I.D. Jacobsen, D. Barz, O. Kurzai, B. Hube, A family of glutathione peroxidases contributes to oxidative stress resistance in Candida albicans, Medical mycology, 52 (2014) 223-239.
[54] B. Maras, L. Angiolella, G. Mignogna, E. Vavala, A. Macone, M. Colone, G. Pitari, A. Stringaro, S. Dupré, A.T. Palamara, Glutathione metabolism in Candida albicans resistant strains to fluconazole and micafungin, PloS one, 9 (2014).
[55] R.M. Marion, A. Regev, E. Segal, Sfp1 is a stress-and nutrient-sensitive regulator of ribosomal protein gene expression, Proceedings of the …, (2004).
[56] Z. Xu, D. Norris, The SFP1 gene product of Saccharomyces cerevisiae regulates G2/M transitions during the mitotic cell cycle and DNA-damage response, Genetics, 150 (1998) 1419-1428.
[57] H.-F. Chen, C.-Y. Lan, Role of SFP1 in the Regulation of Candida albicans Biofilm Formation, PloS one, 10 (2015).
[58] P.C. Hsu, C.C. Chao, C.Y. Yang, Y.L. Ye, F.C. Liu, Y.J. Chuang, C.Y. Lan, Diverse Hap43-independent functions of the Candida albicans CCAAT-binding complex, Eukaryot Cell, 12 (2013) 804-815.
[59] H. Nailis, T. Coenye, F. Van Nieuwerburgh, D. Deforce, H.J. Nelis, Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR, BMC Mol Biol, 7 (2006) 25.
[60] R. Ramani, V. Chaturvedi, Flow cytometry antifungal susceptibility testing of pathogenic yeasts other than Candida albicans and comparison with the NCCLS broth microdilution test, Antimicrob Agents Chemother, 44 (2000) 2752-2758.
[61] EUCAST definitive document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 14 (2008) 398-405.
[62] B.-D.D. Dai, Y. Wang, L.-X.X. Zhao, D.-D.D. Li, M.-B.B. Li, Y.-B.B. Cao, Y.-Y.Y. Jiang, Cap1p attenuates the apoptosis of Candida albicans, The FEBS journal, 280 (2013) 2633-2643.
[63] I. Rahman, A. Kode, S.K. Biswas, Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method, Nature Protocols, 1 (2006) 3159-3165.
[64] R.F. Beers, I.W. Sizer, A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase, J Biol chem, 195 (1952) 133-140.
[65] S. Gago, R. García-Rodas, I. Cuesta, E. Mellado, A. Alastruey-Izquierdo, Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis virulence in the non-conventional host Galleria mellonella, Virulence, 5 (2014) 278-285.
[66] R. Scherz-Shouval, Z. Elazar, ROS, mitochondria and the regulation of autophagy, Trends Cell Biol, 17 (2007) 422-427.
[67] D.B. Zorov, M. Juhaszova, S.J. Sollott, Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release, Physiol Rev, 94 (2014) 909-950.
[68] T. Fukai, M. Ushio-Fukai, Superoxide dismutases: role in redox signaling, vascular function, and diseases, Antioxid Redox Signal, 15 (2011) 1583-1606.
[69] C.C. Yeh, M.F. Hou, S.M. Tsai, S.K. Lin, J.K. Hsiao, J.C. Huang, L.H. Wang, S.H. Wu, L.A. Hou, H. Ma, L.Y. Tsai, Superoxide anion radical, lipid peroxides and antioxidant status in the blood of patients with breast cancer, Clin Chim Acta, 361 (2005) 104-111.
[70] B. Halliwell, J.M. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem J, 219 (1984) 1-14.
[71] A. Panday, M.K. Sahoo, D. Osorio, S. Batra, NADPH oxidases: an overview from structure to innate immunity-associated pathologies, Cellular & molecular immunology, 12 (2015) 5-23.
[72] D.N. Criddle, S. Gillies, H.K. Baumgartner-Wilson, Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells, Journal of Biological …, (2006).
[73] Q. Yu, B. Zhang, J. Li, B. Zhang, H. Wang, M. Li, Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans, Free Radic Biol Med, 99 (2016) 572-583.
[74] H. Wang, J.A. Joseph, Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader, Free Radic Biol Med, 27 (1999) 612-616.
[75] I.E. Frohner, C. Bourgeois, K. Yatsyk, O. Majer, K. Kuchler, Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance, Mol Microbiol, 71 (2009) 240-252.
[76] R. Alonso-Monge, F. Navarro-García, E. Román, A.I. Negredo, B. Eisman, C. Nombela, J. Pla, The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans, Eukaryotic cell, 2 (2003) 351-361.
[77] E. Román, C. Nombela, J. Pla, The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans, Molecular and cellular biology, 25 (2005) 10611-10627.
[78] N. Chauhan, D. Inglis, E. Roman, J. Pla, D. Li, J.A. Calera, R. Calderone, Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress, Eukaryotic cell, 2 (2003) 1018-1024.
[79] A. Meister, On the discovery of glutathione, Trends in biochemical sciences, 13 (1988) 185-188.
[80] A. Pastore, G. Federici, E. Bertini, F. Piemonte, Analysis of glutathione: implication in redox and detoxification, Clinica Chimica Acta, 333 (2003) 19-39.
[81] R. Quintana-Cabrera, J.P. Bolanos, Glutathione and gamma-glutamylcysteine in hydrogen peroxide detoxification, Methods Enzymol, 527 (2013) 129-144.
[82] Y. Lin, J.E. Spallholz, Generation of reactive oxygen species from the reaction of selenium compounds with thiols and mammary tumor cells, Biochemical pharmacology, 45 (1993) 429-437.
[83] D. Kobayashi, K. Kondo, N. Uehara, S. Otokozawa, N. Tsuji, A. Yagihashi, N. Watanabe, Endogenous Reactive Oxygen Species Is an Important Mediator of Miconazole Antifungal Effect, Antimicrobial Agents and Chemotherapy, 46 (2002) 3113-3117.
[84] C. Chin, F. Donaghey, K. Helming, M. McCarthy, S. Rogers, N. Austriaco, Deletion of AIF1 but not of YCA1/MCA1 protects Saccharomyces cerevisiae and Candida albicans cells from caspofungin-induced programmed cell death, Microbial cell (Graz, Austria), 1 (2014) 58-63.
[85] J.F. Camargo, S.A. Lobo, A.P. Hsu, C.S. Zerbe, G.P. Wormser, S.M. Holland, MonoMAC Syndrome in a Patient With a GATA2 Mutation: Case Report and Review of the Literature, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 57 (2013) 697-699.
[86] M. Gharaghani, A. Rezaei-Matehkolaei, A. Zarei Mahmoudabadi, B. Keikhaei, The Frequency, Antifungal Susceptibility and Enzymatic Profiles of Candida Species Isolated from Neutropenic Patients, Jundishapur Journal of Microbiology, 9 (2016).
[87] S.-C. Cheng, L.A.B. Joosten, B.-J. Kullberg, M.G. Netea, Interplay between Candida albicans and the Mammalian Innate Host Defense, Infection and Immunity, 80 (2012) 1304-1313.
[88] M.B. Hampton, A.J. Kettle, C.C. Winterbourn, Involvement of superoxide and myeloperoxidase in oxygen-dependent killing of Staphylococcus aureus by neutrophils, Infect Immun, 64 (1996) 3512-3517.
[89] D.K. Cremer, D.K. Brucker, I. Staes, A. Peeters, Stimulation of superoxide production increases fungicidal action of miconazole against Candida albicans biofilms, Scientific reports, (2016).
[90] C. Linares, S. Giacomelli, D. Altenhofen, S. Alves, V. Morsch, M. Schetinger, Fluconazole and amphotericin-B resistance are associated with increased catalase and superoxide dismutase activity in Candida albicans and Candida dubliniensis, Revista da Sociedade Brasileira de Medicina Tropical, 46 (2013) 752-758.
[91] M.D. Ramírez-Quijas, R. Zazueta-Sandoval, Effect of oxidative stress on cell wall morphology in four pathogenic Candida species, Mycological …, (2015).
[92] S. Znaidi, K.S. Barker, S. Weber, A.-M.M. Alarco, T.T. Liu, G. Boucher, P.D. Rogers, M. Raymond, Identification of the Candida albicans Cap1p regulon, Eukaryotic cell, 8 (2009) 806-820.
[93] C.M. Grant, G. Perrone, I.W. Dawes, Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae, Biochem Biophys Res Commun, 253 (1998) 893-898.
[94] B. Enjalbert, D.A. Smith, M.J. Cornell, I. Alam, S. Nicholls, A.J. Brown, J. Quinn, Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans, Molecular biology of the cell, 17 (2006) 1018-1032.
[95] C. Morand, L. Rios, C. Moundras, C. Besson, C. Remesy, C. Demigne, Influence of methionine availability on glutathione synthesis and delivery by the liver, The Journal of Nutritional Biochemistry, 8 (1997) 246-255.
[96] B. Zhang, Q. Yu, Y. Wang, C. Xiao, J. Li, D. Huo, D. Zhang, C. Jia, M. Li, The Candida albicans fimbrin Sac6 regulates oxidative stress response (OSR) and morphogenesis at the transcriptional level, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863 (2016) 2255-2266.
[97] C. Desai, J. Mavrianos, N. Chauhan, Candida albicans SRR1, a Putative Two-Component Response Regulator Gene, Is Required for Stress Adaptation, Morphogenesis, and Virulence, Eukaryotic Cell, 10 (2011) 1370-1374.
[98] P. Singh, N. Chauhan, A. Ghosh, F. Dixon, R. Calderone, SKN7 of Candida albicans: Mutant Construction and Phenotype Analysis, Infect Immun, 72 (2004) 2390-2394.
[99] A.M. Gillum, E.Y. Tsay, D.R. Kirsch, Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations, Molecular & general genetics : MGG, 198 (1984) 179-182.
[100] H.-F. Chen, Studying Candida albicans Sfp1 in the Regulation of Biofilm Formation and Drug Resistance, Dissertation of Doctor of Philosophy (2016).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *