帳號:guest(18.219.140.44)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃耀燊
作者(外文):Huang, Yao-Shen
論文名稱(中文):利用聚焦式超音波建立調控細胞生理活性之系統
論文名稱(外文):Developing approaches to manipulate cellular activities with focused ultrasound
指導教授(中文):林玉俊
指導教授(外文):Lin, Yu-Chun
口試委員(中文):葉秩光
陳令儀
吳玉威
江柏翰
口試委員(外文):Yeh, Chih-Kuang
Chen, Linyi
Wu, Yu-Wei
Chiang, Po-Han
學位類別:博士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:104080564
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:118
中文關鍵詞:非侵入性治療超音波遺傳學超音波感應蛋白超音波化學混和系統聲穿孔化學分子引起蛋白聚合系統
外文關鍵詞:ultrasoundCID systemsonogeneticssonoporationprestinnon-invasive
相關次數:
  • 推薦推薦:0
  • 點閱點閱:34
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
利用生物體外的工具來操控生物體內的各式活性,一直都是人們夢寐以求的技術。而在基礎研究中,數個能夠遠程控制細胞活性的技術已被建立且被廣泛的使用。這些技術主要是藉由藥物、光子及磁場,三種物質作為刺激源,雖然它們都有個別的優勢,但在技術的劣勢層面卻也難以平衡。綜合來說,其劣勢包含:刺激的時間點以及位置難以精準掌控;刺激源在生物組織之穿透力低弱,需輔以侵入性手段植入裝置;無法準確聚焦於目標區域且不影響刺激路徑上的組織。與此同時,另一個長期與人類生活有所連結的─超音波,具有以下優點:穿透力強,可將能量傳遞至深層生物組織達到非侵入性的刺激;普遍使用的醫療超音波,能聚焦在毫米等級的範圍內,而不影響傳遞路徑之組織活性。上述優勢都表明了其作為刺激源的安全性。而此篇論文主要是利用了超音波作為外部刺激源,來尋找改善這些劣勢的可能性,並開發出新的超音波遠端遙控生物活性之技術。
第一個開發的技術為結合了聲孔作用以及化學性誘導蛋白聚合系統。首先對小分子藥物進行改造,使其無法穿透細胞膜後,利用聲孔作用,在超音波的刺激下,瞬間引入此改造藥物至目標細胞內,引起蛋白質聚合,控制我們感興趣的生理活性。實驗結果證明了此技術能夠快速且有效的調控細胞膜上特定磷脂質的代謝。第二個技術則是超音波遺傳工具。在一連串的資料蒐集後,我們鎖定了一個可能的超音波感應蛋白,源自哺乳類動物聽覺系統。並進一步比對了不同超音波物種間的遺傳訊息,依此對此蛋白進行改造,替換了特定兩處的氨基酸序列。實驗結果顯示,將此遺傳改造的感應蛋白表現於哺乳類細胞內後,成功的使其對超音波的刺激產生反應,引發鈣離子流入,並能活化大腦深處的神經。另一方面,以上兩種技術所使用的音波刺激皆為低頻率及低聲壓,實驗結果也證明不會影響細胞的生存率。
此論文所開發的兩個技術,成功改善傳統技術的缺點,拓展了超音波技術領域的應用性,達到非侵入性、高精準性的遠程調控深層組織活性之目的,並期望在未來能提供臨床醫療上的應用以及加速基礎研究之發展。
Several external stimulus have been utilized to remotely control a range of cellular events in genetically-modified target cells. However, the conventional methods using stimuli including chemicals, photons, and magnetic fields are limited by different drawbacks: slow pharmacokinetic, invasiveness, or poor spatiotemporal resolution. While the intrinsic properties of stimuli hinder their feasibility in therapeutic applications, ultrasound, a well-developed tool with good penetrability and spatiotemporal resolution, provide a potential solution to address this issue. Therefore, we focused on developing new approaches to precisely manipulate cellular activities in target cells by ultrasound stimulation. The first developed approach is a hybrid system composed of the US-driven sonoporation and a chemically-inducible dimerization tool. Excitation of ultrasound on microbubble-attached cells transiently increase the membrane permeability, resulting in the influx of synthetic dimerizer and manipulate specific cellular activities via CID system. With this approach, we successfully manipulated membrane phospholipid composition in target cells by ultrasound excitation. The second approach we established is a new sonogenetic tool which is achieved by an engineered auditory-sensing protein, prestin. Heterogeneous expression of mouse prestin carrying with two parallel amino acid substitutions, N7T and N308S that frequently appear in echolocating mammals, sensitizes genetically-modified mammalian cells to ultrasound stimulation at 0.5 MHz, leading to the influx of calcium from extracellular space and activate neurons in deep regions of mouse brain. Most importantly, low-frequency, low-pressure, and focused ultrasound are utilized in both approaches without inducing apparent adverse effects to cells. These two ultrasound-based approaches allow us to spatiotemporally manipulate the cellular activities and offer potential strategies for non-invasive therapy in deep tissue.
中文摘要-------i
Abstract-------ii
致謝-------iii
Table of Contents-------v
Abbreviation-------ix
Ch1. Research Synopsis-------1
1.1 The background and aims of this thesis study-------1
1.2 Ultrasound, an ideal stimulus for non-invasive stimulation-------1
1.2.1 Introduction-------1
1.2.2 Biological effects-------2
1.2.3 Overview of biological effect studies-------4
1.3 Basic concept of experimental strategy-------4
Ch2. Ultrasound-Chemical Hybrid Tool-------6
2.1 Introduction-------6
2.1.1 Chemically inducible dimerization system-------6
2.1.2 An extended approach of ultrasound: Sonoporation-------7
2.1.3 The combination of CID system and sonoporation-------8
2.2 Materials and methods-------9
2.2.1 Cell Culture-------9
2.2.2 Plasmid construction-------9
2.2.3 In vitro transfection-------9
2.2.4 Preparation of Folate-conjugated, fluorescent-labeling microbubbles (FMBs)-------10
2.2.5 Setup of FUS sonication-------12
2.2.6 Live cell imaging-------12
2.2.7 Cytotoxicity measurements-------14
2.3 Results-------15
2.3.1 Synthesis of membrane-impermeable dimerizers based on rapamycin for sonoporation-inducible dimerization system-------15
2.3.2 Rapa conjugated with biotin prevent the membrane permeation and remains functional in inducing dimerization-------16
2.3.3 Pulsed FUS at low-frequency efficiently increase membrane permeability by disrupting membrane-bound MBs-------17
2.3.4 Sonoporation rapidly triggers the influx of RPB and subsequently induces dimerization for modulation of phospholipid metabolism-------18
2.3.5 Sonoporation trigger the GA3-dependent dimerization system-------19
2.3.6 SonoCID enables simultaneously triggering of multiple CID systems in various cell-types-------20
Ch3. Identification of Genetically Encoded Ultrasound-Responsive Proteins (URPs) for Non-Invasive Neuromodulation-------22
3.1 Introduction-------22
3.1.1 The challenges of applying ultrasound to non-invasively control neural activity-------22
3.1.2 Overview of chemogenetics, optogenetics and magnetogenetics-------23
3.1.3 Recent development of sonogenetics-------25
3.1.4 Prestin, a candidate of URP-------27
3.2 Materials and methods-------29
3.2.1 Cell Culture-------29
3.2.2 Plasmid construction-------29
3.2.3 In vitro transfection-------30
3.2.4 Preparation of MBs-------31
3.2.5 Preparation of Adeno-associated virus (AAV) and Lentivirus-------32
3.2.6 Acoustic peak negative pressure and US focal zone measurement-------33
3.2.7 In vitro FUS stimulation-------34
3.2.8 Live-cell imaging and data analysis-------35
3.2.9 Immunofluorescence staining-------36
3.2.10 Primary neuronal culture and lentivirus transduction-------37
3.2.11 In vivo gene delivery-------38
3.2.12 In vivo FUS stimulation-------39
3.2.13 Immunohistochemistry staining (IHC) of mouse brain slices and quantification of c-Fos expression-------40
3.2.14 Cell viability test-------41
3.2.15 Measurement of the thermal effect upon ultrasound stimulation-------42
3.3 Results-------43
3.3.1 The setup of FUS stimulation and live-cell imaging for investigating the ultrasound-sensitivity of various Prestin mutants-------43
3.3.2 mPrestin(N7T, N308S) enables HEK 293T cells to sense the ultrasound stimulation-------44
3.3.3 mPrestin(N7T, N308S) is responsive specifically to 0.5 MHz ultrasound-------45
3.3.4 Plasma membrane targeting of prestin is important for its ultrasound sensitivity-------46
3.3.5 Self-association of mPrestin(N7T, N308S) forms puncta and responds to FUS stimulation in an oscillation manner-------47
3.3.6 mPrestin(N7T, N308S) triggers the calcium influx from extracellular space upon FUS stimulation-------49
3.3.7 mPrestin(N7T, N308S) enables selectively non-invasive activation of VTA neurons via FUS stimulation-------51
3.3.8 FUS with low-PRF exclusively activate mPrestin(N7T, N308S)-expressed neurons in target region without taking effect via activation of auditory neurons-------52
Ch4. Discussion-------54
4.1 Summary of this thesis study-------54
4.2 Discussion of the established approaches and findings in this thesis study-------54
Tables, Figures and Movies-------59
Tables-------59
Figures-------62
Movie list-------109
References-------110

1. Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. &Deisseroth, K. Optogenetics in Neural Systems. Neuron 71, 9–34 (2011) .
2. Sternson, S. M. &Roth, B. L. Chemogenetic Tools to Interrogate Brain Functions. Annu. Rev. Neurosci. 37, 387–407 (2014).
3. Qin, S. et al. A magnetic protein biocompass. Nat. Mater. 15, 217–226 (2016).
4. Stanley, S. A., Sauer, J., Kane, R. S., Dordick, J. S. &Friedman, J. M. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 21, 92–98 (2015).
5. Yu, J., Lavery, L. &Kim, K. Super-resolution ultrasound imaging method for microvasculature in vivo with a high temporal accuracy. Sci. Rep. 8, 13918 (2018).
6. Fregni, F. &Pascual-Leone, A. Technology Insight: Noninvasive brain stimulation in neurology - Perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol. 3, 383–393 (2007).
7. Kubanek, J. et al. Ultrasound modulates ion channel currents. Sci. Rep. 6, 1–14 (2016).
8. Tyler, W. J. et al. Remote Excitation of Neuronal Circuits Using Low-Intensity, Low-Frequency Ultrasound. PLoS One 3, e3511 (2008).
9. Georgiev, G. P., Karabinov, V., Kotov, G. &Iliev, A. Medical Ultrasound in the Evaluation of the Carpal Tunnel: A Critical Review. Cureus 10, (2018).
10. Speed, C. A. Therapeutic ultrasound in soft tissue lesions. Rheumatology 40, 1331–1336 (2001).
11. Miller, D. L. et al. Overview of therapeutic ultrasound applications and safety considerations. J. Ultrasound Med. 31, 623–634 (2012).
12. O’Brien, W. D. Ultrasound-biophysics mechanisms. Prog. Biophys. Mol. Biol. 93, 212–255 (2007).
13. terHaar, G. Ultrasound Bio-Effects and Safety Considerations. in Frontiers of Neurology and Neuroscience vol. 36 23–30 (2014).
14. Ohl, S. W., Klaseboer, E. &Khoo, B. C. Bubbles with shock waves and ultrasound: A review. Interface Focus 5, 1–15 (2015).
15. Zhang, Y., Yu, J., Bomba, H. N., Zhu, Y. &Gu, Z. Mechanical Force-Triggered Drug Delivery. Chem. Rev. 116, 12536–12563 (2016).
16. Izadifar, Z., Babyn, P. &Chapman, D. Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge. Ultrasound Med. Biol. 43, 1085–1104 (2017).
17. Karaboce, B. Investigation of thermal effect by focused ultrasound in cancer treatment. IEEE Instrum. Meas. Mag. 19, 20–64 (2016).
18. terHaar, G. &Coussios, C. High intensity focused ultrasound: Physical principles and devices. Int. J. Hyperth. 23, 89–104 (2007).
19. Liu, D. D., Ullah, M., Concepcion, W., Dahl, J. J. &Thakor, A. S. The role of ultrasound in enhancing mesenchymal stromal cell-based therapies. Stem Cells Translational Medicine vol. 9 850–866 (2020).
20. Gutowski, K. A. Microfocused Ultrasound for Skin Tightening. Clin. Plast. Surg. 43, 577–582 (2016).
21. Fan, C. H. et al. Manipulating Cellular Activities Using an Ultrasound-Chemical Hybrid Tool. ACS Synth. Biol. 6, 2021–2027 (2017).
22. Voß, S., Klewer, L. &Wu, Y.-W. Chemically induced dimerization: reversible and spatiotemporal control of protein function in cells. Curr. Opin. Chem. Biol. 28, 194–201 (2015).
23. Putyrski, M. &Schultz, C. Protein translocation as a tool: The current rapamycin story. FEBS Lett. 586, 2097–2105 (2012).
24. DeRose, R., Miyamoto, T. &Inoue, T. Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflügers Arch. - Eur. J. Physiol. 465, 409–417 (2013).
25. Kudo, N., Okada, K. &Yamamoto, K. Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells. Biophys. J. 96, 4866–4876 (2009).
26. Sboros, V. Response of contrast agents to ultrasound. Adv. Drug Deliv. Rev. 60, 1117–1136 (2008).
27. Husseini, G. A., Diaz De La Rosa, M. A., Richardson, E. S., Christensen, D. A. &Pitt, W. G. The role of cavitation in acoustically activated drug delivery. J. Control. Release 107, 253–261 (2005).
28. Mitragotri, S. Healing sound: The use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 4, 255–260 (2005).
29. Fry, F. J., Sanghvi, N. T., Foster, R. S., Bihrle, R. &Hennige, C. Ultrasound and microbubbles: Their generation, detection and potential utilization in tissue and organ therapy-Experimental. Ultrasound Med. Biol. 21, 1227–1237 (1995).
30. Greenleaf, W. J., Bolander, M. E., Sarkar, G., Goldring, M. B. &Greenleaf, J. F. Artificial Cavitation Nuclei Significantly Enhance Acoustically Induced Cell Transfection. Ultrasound Med. Biol. 24, 587–595 (1998).
31. Sakakima, Y. et al. Gene therapy for hepatocellular carcinoma using sonoporation enhanced by contrast agents. Cancer Gene Ther. 12, 884–889 (2005).
32. Zolochevska, O. et al. Sonoporation delivery of interleukin-27 gene therapy efficiently reduces prostate tumor cell growth in vivo. Hum. Gene Ther. 22, 1537–1550 (2011).
33. Taniyama, Y. et al. Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther. 9, 372–380 (2002).
34. Alkins, R. et al. Focused Ultrasound Delivers Targeted Immune Cells to Metastatic Brain Tumors. Cancer Res. 73, 1892–1899 (2013).
35. Li, Y. H. et al. Targeted delivery of biodegradable nanoparticles with ultrasound-targeted microbubble destruction-mediated hVEGF-siRNA transfection in human PC-3 cells in vitro. Int. J. Mol. Med. 31, 163–171 (2013).
36. DeTemmerman, M. L. et al. MRNA-Lipoplex loaded microbubble contrast agents for ultrasound-assisted transfection of dendritic cells. Biomaterials 32, 9128–9135 (2011).
37. Frenkel, V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv. Drug Deliv. Rev. 60, 1193–1208 (2008).
38. Togtema, M. et al. Sonoporation Delivery of Monoclonal Antibodies against Human Papillomavirus 16 E6 Restores p53 Expression in Transformed Cervical Keratinocytes. PLoS One 7, e50730 (2012).
39. Zhang, C.-B. et al. Enhancement Effect of Ultrasound-Induced Microbubble Cavitation on Branched Polyethylenimine-Mediated VEGF165 Transfection With Varied N/P Ratio. Ultrasound Med. Biol. 39, 161–171 (2013).
40. Lentacker, I., DeCock, I., Deckers, R., DeSmedt, S. C. &Moonen, C. T. W. Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms. Adv. Drug Deliv. Rev. 72, 49–64 (2014).
41. Chu, P. C. et al. Neuromodulation accompanying focused ultrasound-induced blood-brain barrier opening. Sci. Rep. 5, 1–12 (2015).
42. Unga, J. &Hashida, M. Ultrasound induced cancer immunotherapy. Adv. Drug Deliv. Rev. 72, 144–153 (2014).
43. Umeda, N., Ueno, T., Pohlmeyer, C., Nagano, T. &Inoue, T. A Photocleavable Rapamycin Conjugate for Spatiotemporal Control of Small GTPase Activity. J. Am. Chem. Soc. 133, 12–14 (2011).
44. Zhang, X. et al. The specific and rapid labeling of cell surface proteins with recombinant FKBP-fused fluorescent proteins. Protein Cell 5, 800–803 (2014).
45. Fan, C. H. et al. Folate-conjugated gene-carrying microbubbles with focused ultrasound for concurrent blood-brain barrier opening and local gene delivery. Biomaterials 106, 46–57 (2016).
46. Ueno, T., Falkenburger, B. H., Pohlmeyer, C. &Inoue, T. Triggering Actin Comets Versus Membrane Ruffles: Distinctive Effects of Phosphoinositides on Actin Reorganization. Sci. Signal. 4, ra87–ra87 (2011).
47. Miyamoto, T. et al. Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. Nat. Chem. Biol. 8, 465–470 (2012).
48. Lin, Y.-C. et al. Rapidly Reversible Manipulation of Molecular Activity with Dual Chemical Dimerizers. Angew. Chemie Int. Ed. 52, 6450–6454 (2013).
49. Lin, Y.-C. et al. Chemically inducible diffusion trap at cilia reveals molecular sieve–like barrier. Nat. Chem. Biol. 9, 437–443 (2013).
50. Huang, Y. S. et al. Sonogenetic Modulation of Cellular Activities Using an Engineered Auditory-Sensing Protein. Nano Lett. 20, 1089–1100 (2020).
51. FRY, F. J., ADES, H. W. &FRY, W. J. Production of Reversible Changes in the Central Nervous System by Ultrasound. Science. 127, 83–84 (1958).
52. Menz, M. D., Oralkan, Ö., Khuri-Yakub, P. T. &Baccus, S. A. Precise neural stimulation in the retina using focused ultrasound. J. Neurosci. 33, 4550–4560 (2013).
53. Yoo, S.-S. et al. Focused ultrasound modulates region-specific brain activity. Neuroimage 56, 1267–1275 (2011).
54. Tufail, Y., Yoshihiro, A., Pati, S., Li, M. M. &Tyler, W. J. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat. Protoc. 6, 1453–1470 (2011).
55. Tufail, Y. et al. Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits. Neuron 66, 681–694 (2010).
56. King, R. L., Brown, J. R., Newsome, W. T. &Pauly, K. B. Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med. Biol. 39, 312–331 (2013).
57. Tsui, P.-H., Wang, S.-H. &Huang, C.-C. In vitro effects of ultrasound with different energies on the conduction properties of neural tissue. Ultrasonics 43, 560–565 (2005).
58. Foley, J. L., Little, J. W. &Vaezy, S. Image-guided high-intensity focused ultrasound for conduction block of peripheral nerves. Ann. Biomed. Eng. 35, 109–119 (2007).
59. Blackmore, J., Shrivastava, S., Sallet, J., Butler, C. R. &Cleveland, R. O. Ultrasound Neuromodulation: A Review of Results, Mechanisms and Safety. Ultrasound Med. Biol. 45, 1509–1536 (2019).
60. Li, F. et al. Dynamics and mechanisms of intracellular calcium waves elicited by tandem bubble-induced jetting flow. Proc. Natl. Acad. Sci. 115, E353–E362 (2018).
61. Pan, Y. et al. Mechanogenetics for the remote and noninvasive control of cancer immunotherapy. Proc. Natl. Acad. Sci. U. S. A. 115, 992–997 (2018).
62. Willmann, J. K. et al. Targeted Microbubbles for Imaging Tumor Angiogenesis: Assessment of Whole-Body Biodistribution with Dynamic Micro-PET in Mice. Radiology 249, 212–219 (2008).
63. Sirsi, S. R. &Borden, M. A. Microbubble compositions, properties and biomedical applications. Bubble Sci. Eng. Technol. 1, 3–17 (2009).
64. Ng, A. &Swanevelder, J. Resolution in ultrasound imaging. Contin. Educ. Anaesthesia, Crit. Care Pain 11, 186–192 (2011).
65. Strobel, S. A. Ribozyme chemogenetics. Biopolymers 48, 65–81 (1998).
66. Strader, C. D. et al. Allele-specific activation of genetically engineered receptors. J. Biol. Chem. 266, 5–8 (1991).
67. Chen, X. et al. The first structure-activity relationship studies for designer receptors exclusively activated by designer drugs. ACS Chem. Neurosci. 6, 476–484 (2015).
68. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. &Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. 104, 5163–5168 (2007).
69. Whissell, P. D., Tohyama, S. &Martin, L. J. The Use of DREADDs to Deconstruct Behavior. Front. Genet. 7, 1–15 (2016).
70. Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).
71. Zhu, H. et al. Chemogenetic inactivation of ventral hippocampal glutamatergic neurons disrupts consolidation of contextual fear memory. Neuropsychopharmacology 39, 1880–1892 (2014).
72. Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science. 357, 503–507 (2017).
73. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. U. S. A. 100, 13940–13945 (2003).
74. Bi, A. et al. Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration. Neuron 50, 23–33 (2006).
75. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. &Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).
76. Pathak, G. P., Vrana, J. D. &Tucker, C. L. Optogenetic control of cell function using engineered photoreceptors. Biol. Cell 105, 59–72 (2013).
77. Valon, L., Marín-Llauradó, A., Wyatt, T., Charras, G. &Trepat, X. Optogenetic control of cellular forces and mechanotransduction. Nat. Commun. 8, 14396 (2017).
78. Han, X. et al. Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain. Neuron 62, 191–198 (2009).
79. Bernstein, J. G. &Boyden, E. S. Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn. Sci. 15, 592–600 (2011).
80. Ruan, J. &Prasad, P. The Effects of Skull Thickness Variations on Human Head Dynamic Impact Responses. SAE Tech. Pap. 45, (2001).
81. Douplik, A., Saiko, G., Schelkanova, I. &Tuchin, V.V. The response of tissue to laser light. Lasers for Medical Applications: Diagnostics, Therapy and Surgery (Woodhead Publishing Limited, 2013). doi:10.1533/9780857097545.1.47.
82. Ung, K. &Arenkiel, B. R. Fiber-optic Implantation for Chronic Optogenetic Stimulation of Brain Tissue. J. Vis. Exp. 1–6 (2012) doi:10.3791/50004.
83. Long, X., Ye, J., Zhao, D. &Zhang, S. J. Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor. Sci. Bull. 60, 2107–2119 (2015).
84. Deng, Z.De, Lisanby, S. H. &Peterchev, A.V. Coil design considerations for deep transcranial magnetic stimulation. Clin. Neurophysiol. 125, 1202–1212 (2014).
85. Gomez, L. J., Goetz, S. M. &Peterchev, A.V. Design of transcranial magnetic stimulation coils with optimal trade-off between depth, focality, and energy. J. Neural Eng. 15, 1–33 (2018).
86. Nimpf, S. &Keays, D. A. Is magnetogenetics the new optogenetics? EMBO J. 36, 1643–1646 (2017).
87. Pang, K. et al. MagR alone is insufficient to confer cellular calcium responses to magnetic stimulation. Front. Neural Circuits 11, 1–13 (2017).
88. Moon, J. et al. Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling. Adv. Funct. Mater. 2000577, 1–9 (2020).
89. Rosenfeld, D. et al. Transgene-free remote magnetothermal regulation of adrenal hormones. Sci. Adv. 6, eaaz3734 (2020).
90. Gregurec, D. et al. Magnetic Vortex Nanodiscs Enable Remote Magnetomechanical Neural Stimulation. ACS Nano 14, 8036–8045 (2020).
91. Ibsen, S., Tong, A., Schutt, C., Esener, S. &Chalasani, S. H. Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat. Commun. 6, 1–12 (2015).
92. Benjamin M. Davis, Glen F. Rall, M. J. S. Molecular Engineering of Acoustic Protein Nanostructures. ACS Nano. 176, 139–148 (2016).
93. Bourdeau, R. W. et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature 553, 86–90 (2018).
94. Maresca, D. et al. Biomolecular Ultrasound and Sonogenetics. Annu. Rev. Chem. Biomol. Eng. 9, 229–252 (2018).
95. Prieto, M. L., Firouzi, K., Khuri-Yakub, B. T. &Maduke, M. Activation of Piezo1 but Not NaV1.2 Channels by Ultrasound at 43 MHz. Ultrasound Med. Biol. 44, 1217–1232 (2018).
96. Ye, J. et al. Ultrasonic Control of Neural Activity through Activation of the Mechanosensitive Channel MscL. Nano Lett. 18, 4148–4155 (2018).
97. Lawrence, J. P. Physics and instrumentation of ultrasound. Crit. Care Med. 35, (2007).
98. Lim, D. J. Functional structure of the organ of Corti: a review. Hear. Res. 22, 117–146 (1986).
99. Davis, H. An active process in cochlear mechanics. Hear. Res. 9, 79–90 (1983).
100. Ruggero, M. A. Cochlear Delays and Traveling Waves: Comments on ‘Experimental Look at Cochlear Mechanics’: [A. Dancer, Audiology 1992;31:301-312]. Int. J. Audiol. 33, 131–142 (1994).
101. Ashmore, J. Cochlear outer hair cell motility. Physiol. Rev. 88, 173–210 (2008).
102. Alper, S. L. &Sharma, A. K. The SLC26 gene family of anion transporters and channels. Mol. Aspects Med. 34, 494–515 (2013).
103. Fettiplace, R. &Hackney, C. M. The sensory and motor roles of auditory hair cells. Nat. Rev. Neurosci. 7, 19–29 (2006).
104. Cheatham, M. A., Huynh, K. H., Gao, J., Zuo, J. &Dallos, P. Cochlear function in Prestin knockout mice. J. Physiol. 560, 821–830 (2004).
105. Liu, X. Z. et al. Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum. Mol. Genet. 12, 1155–1162 (2003).
106. Mutai, H. et al. Diverse spectrum of rare deafness genes underlies early-childhood hearing loss in Japanese patients: A cross-sectional, multi-center next-generation sequencing study. Orphanet J. Rare Dis. 8, 1 (2013).
107. Takahashi, S., Cheatham, M. A., Zheng, J. &Homma, K. The R130S mutation significantly affects the function of prestin, the outer hair cell motor protein. J. Mol. Med. 94, 1053–1062 (2016).
108. Rossiter, S. J., Zhang, S. &Liu, Y. Prestin and high frequency hearing in mammals. Commun. Integr. Biol. 4, 236–239 (2011).
109. Liu, Z., Qi, F. Y., Zhou, X., Ren, H. Q. &Shi, P. Parallel sites implicate functional convergence of the hearing gene prestin among echolocating mammals. Mol. Biol. Evol. 31, 2415–2424 (2014).
110. Dallos, P. &Fakler, B. Prestin, a new type of motor protein. Nat. Rev. Mol. Cell Biol. 3, 104–111 (2002).
111. Ludwig, J. et al. Reciprocal electromechanical properties of rat prestin: The motor molecule from rat outer hair cells. Proc. Natl. Acad. Sci. U. S. A. 98, 4178–4183 (2001).
112. Zhao, Y. et al. An Expanded Palette of Genetically Encoded Ca2+ Indicators. Science. 333, 1888–1891 (2011).
113. Sato, T., Shapiro, M. G. &Tsao, D. Y. Ultrasonic Neuromodulation Causes Widespread Cortical Activation via an Indirect Auditory Mechanism. Neuron 98, 1031-1041.e5 (2018).
114. Li, Y., Ding, D., Jiang, H., Fu, Y. &Salvi, R. Co-administration of Cisplatin and Furosemide Causes Rapid and Massive Loss of Cochlear Hair Cells in Mice. Neurotox. Res. 20, 307–319 (2011).
115. Sundquist, S. J. &Nisenbaum, L. K. Fast Fos: Rapid protocols for single- and double-labeling c-Fos immunohistochemistry in fresh frozen brain sections. J. Neurosci. Methods 141, 9–20 (2005).
116. Fan, Z., Liu, H., Mayer, M. &Deng, C. X. Spatiotemporally controlled single cell sonoporation. Proc. Natl. Acad. Sci. U. S. A. 109, 16486–16491 (2012).
117. Marino, A. et al. Piezoelectric Nanoparticle-Assisted Wireless Neuronal Stimulation. ACS Nano 9, 7678–7689 (2015).
118. Zhang, Y., Moeini-Naghani, I., Bai, J., Santos-Sacchi, J. &Navaratnam, D. S. Tyrosine motifs are required for prestin basolateral membrane targeting. Biol. Open 4, 197–205 (2015).
119. Greeson, J. N., Organ, L. E., Pereira, F. A. &Raphael, R. M. Assessment of prestin self-association using fluorescence resonance energy transfer. Brain Res. 1091, 140–150 (2006).
120. Mio, K. et al. The motor protein prestin is a bullet-shaped molecule with inner cavities. J. Biol. Chem. 283, 1137–1145 (2008).
121. Zheng, J. et al. The C-terminus of prestin influences nonlinear capacitance and plasma membrane targeting. J. Cell Sci. 118, 2987–2996 (2005).
122. Jacques-Fricke, B. T., Seow, Y., Gottlieb, P. A., Sachs, F. &Gomez, T. M. Ca2+ influx through mechanosensitive channels inhibits neurite outgrowth in opposition to other influx pathways and release from intracellular stores. J. Neurosci. 26, 5656–5664 (2006).
123. Guo, H. et al. Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway. Neuron 98, 1020-1030.e4 (2018).
124. Welm, B. E. et al. Inducible dimerization of FGFR1: development of a mouse model to analyze progressive transformation of the mammary gland. J. Cell Biol. 157, 703–714 (2002).
125. Liu, K. J., Arron, J. R., Stankunas, K., Crabtree, G. R. &Longaker, M. T. Chemical rescue of cleft palate and midline defects in conditional GSK-3β mice. Nature 446, 79–82 (2007).
126. Pan, M.-H., Lin, J., Prior, J. L. &Piwnica-Worms, D. Monitoring Molecular-Specific Pharmacodynamics of Rapamycin In vivo with Inducible Gal4->Fluc Transgenic Reporter Mice. Mol. Cancer Ther. 9, 2752–2760 (2010).
127. Xu, T., Johnson, C. A., Gestwicki, J. E. &Kumar, A. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization. Nat. Protoc. 5, 1831–1843 (2010).
128. Haruki, H., Nishikawa, J. &Laemmli, U. K. The Anchor-Away Technique: Rapid, Conditional Establishment of Yeast Mutant Phenotypes. Mol. Cell 31, 925–932 (2008).
129. Villanueva, F. S. et al. Microbubbles Targeted to Intercellular Adhesion Molecule-1 Bind to Activated Coronary Artery Endothelial Cells. Circulation 98, 1–5 (1998).
130. Zhou, Y. et al. Targeted Antiangiogenesis Gene Therapy Using Targeted Cationic Microbubbles Conjugated with CD105 Antibody Compared with Untargeted Cationic and Neutral Microbubbles. Theranostics 5, 399–417 (2015).
131. Mitragotri, S. &Kost, J. Low-frequency sonophoresis: A review. Adv. Drug Deliv. Rev. 56, 589–601 (2004).
132. Katz, N. P., Shapiro, D. E., Herrmann, T. E., Kost, J. &Custer, L. M. Rapid Onset of Cutaneous Anesthesia with EMLA Cream after Pretreatment with a New Ultrasound-Emitting Device. Anesth. Analg. 98, 371–376 (2004).
133. Abrahao, A. et al. First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat. Commun. 10, 1–9 (2019).
134. Downs, M. E. et al. Long-term safety of repeated blood-brain barrier opening via focused ultrasound with microbubbles in non-human primates performing a cognitive task. PLoS One 10, 1–26 (2015).
135. Krasovitski, B., Frenkel, V., Shoham, S. &Kimmel, E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl. Acad. Sci. U. S. A. 108, 3258–3263 (2011).
136. Plaksin, M., Shoham, S. &Kimmel, E. Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation. Phys. Rev. X 4, 1–10 (2014).
137. Keller, J. P. et al. Functional regulation of the SLC26-family protein prestin by calcium/calmodulin. J. Neurosci. 34, 1325–1332 (2014).
138. Hayner, M. &Hynynen, K. Numerical analysis of ultrasonic transmission and absorption of oblique plane waves through the human skull. J. Acoust. Soc. Am. 110, 3319–3330 (2001).
139. White, P. J., Clement, G. T. &Hynynen, K. Local frequency dependence in transcranial ultrasound transmission. Phys. Med. Biol. 51, 2293–2305 (2006).
140. Patrick G Hogan, Lin Chen, Julie Nardone, A. R. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).
141. Wang, Y. et al. All-optical regulation of gene expression in targeted cells. Sci. Rep. 4, 5346 (2015).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *