|
1. Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. &Deisseroth, K. Optogenetics in Neural Systems. Neuron 71, 9–34 (2011) . 2. Sternson, S. M. &Roth, B. L. Chemogenetic Tools to Interrogate Brain Functions. Annu. Rev. Neurosci. 37, 387–407 (2014). 3. Qin, S. et al. A magnetic protein biocompass. Nat. Mater. 15, 217–226 (2016). 4. Stanley, S. A., Sauer, J., Kane, R. S., Dordick, J. S. &Friedman, J. M. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 21, 92–98 (2015). 5. Yu, J., Lavery, L. &Kim, K. Super-resolution ultrasound imaging method for microvasculature in vivo with a high temporal accuracy. Sci. Rep. 8, 13918 (2018). 6. Fregni, F. &Pascual-Leone, A. Technology Insight: Noninvasive brain stimulation in neurology - Perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol. 3, 383–393 (2007). 7. Kubanek, J. et al. Ultrasound modulates ion channel currents. Sci. Rep. 6, 1–14 (2016). 8. Tyler, W. J. et al. Remote Excitation of Neuronal Circuits Using Low-Intensity, Low-Frequency Ultrasound. PLoS One 3, e3511 (2008). 9. Georgiev, G. P., Karabinov, V., Kotov, G. &Iliev, A. Medical Ultrasound in the Evaluation of the Carpal Tunnel: A Critical Review. Cureus 10, (2018). 10. Speed, C. A. Therapeutic ultrasound in soft tissue lesions. Rheumatology 40, 1331–1336 (2001). 11. Miller, D. L. et al. Overview of therapeutic ultrasound applications and safety considerations. J. Ultrasound Med. 31, 623–634 (2012). 12. O’Brien, W. D. Ultrasound-biophysics mechanisms. Prog. Biophys. Mol. Biol. 93, 212–255 (2007). 13. terHaar, G. Ultrasound Bio-Effects and Safety Considerations. in Frontiers of Neurology and Neuroscience vol. 36 23–30 (2014). 14. Ohl, S. W., Klaseboer, E. &Khoo, B. C. Bubbles with shock waves and ultrasound: A review. Interface Focus 5, 1–15 (2015). 15. Zhang, Y., Yu, J., Bomba, H. N., Zhu, Y. &Gu, Z. Mechanical Force-Triggered Drug Delivery. Chem. Rev. 116, 12536–12563 (2016). 16. Izadifar, Z., Babyn, P. &Chapman, D. Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge. Ultrasound Med. Biol. 43, 1085–1104 (2017). 17. Karaboce, B. Investigation of thermal effect by focused ultrasound in cancer treatment. IEEE Instrum. Meas. Mag. 19, 20–64 (2016). 18. terHaar, G. &Coussios, C. High intensity focused ultrasound: Physical principles and devices. Int. J. Hyperth. 23, 89–104 (2007). 19. Liu, D. D., Ullah, M., Concepcion, W., Dahl, J. J. &Thakor, A. S. The role of ultrasound in enhancing mesenchymal stromal cell-based therapies. Stem Cells Translational Medicine vol. 9 850–866 (2020). 20. Gutowski, K. A. Microfocused Ultrasound for Skin Tightening. Clin. Plast. Surg. 43, 577–582 (2016). 21. Fan, C. H. et al. Manipulating Cellular Activities Using an Ultrasound-Chemical Hybrid Tool. ACS Synth. Biol. 6, 2021–2027 (2017). 22. Voß, S., Klewer, L. &Wu, Y.-W. Chemically induced dimerization: reversible and spatiotemporal control of protein function in cells. Curr. Opin. Chem. Biol. 28, 194–201 (2015). 23. Putyrski, M. &Schultz, C. Protein translocation as a tool: The current rapamycin story. FEBS Lett. 586, 2097–2105 (2012). 24. DeRose, R., Miyamoto, T. &Inoue, T. Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflügers Arch. - Eur. J. Physiol. 465, 409–417 (2013). 25. Kudo, N., Okada, K. &Yamamoto, K. Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells. Biophys. J. 96, 4866–4876 (2009). 26. Sboros, V. Response of contrast agents to ultrasound. Adv. Drug Deliv. Rev. 60, 1117–1136 (2008). 27. Husseini, G. A., Diaz De La Rosa, M. A., Richardson, E. S., Christensen, D. A. &Pitt, W. G. The role of cavitation in acoustically activated drug delivery. J. Control. Release 107, 253–261 (2005). 28. Mitragotri, S. Healing sound: The use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 4, 255–260 (2005). 29. Fry, F. J., Sanghvi, N. T., Foster, R. S., Bihrle, R. &Hennige, C. Ultrasound and microbubbles: Their generation, detection and potential utilization in tissue and organ therapy-Experimental. Ultrasound Med. Biol. 21, 1227–1237 (1995). 30. Greenleaf, W. J., Bolander, M. E., Sarkar, G., Goldring, M. B. &Greenleaf, J. F. Artificial Cavitation Nuclei Significantly Enhance Acoustically Induced Cell Transfection. Ultrasound Med. Biol. 24, 587–595 (1998). 31. Sakakima, Y. et al. Gene therapy for hepatocellular carcinoma using sonoporation enhanced by contrast agents. Cancer Gene Ther. 12, 884–889 (2005). 32. Zolochevska, O. et al. Sonoporation delivery of interleukin-27 gene therapy efficiently reduces prostate tumor cell growth in vivo. Hum. Gene Ther. 22, 1537–1550 (2011). 33. Taniyama, Y. et al. Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther. 9, 372–380 (2002). 34. Alkins, R. et al. Focused Ultrasound Delivers Targeted Immune Cells to Metastatic Brain Tumors. Cancer Res. 73, 1892–1899 (2013). 35. Li, Y. H. et al. Targeted delivery of biodegradable nanoparticles with ultrasound-targeted microbubble destruction-mediated hVEGF-siRNA transfection in human PC-3 cells in vitro. Int. J. Mol. Med. 31, 163–171 (2013). 36. DeTemmerman, M. L. et al. MRNA-Lipoplex loaded microbubble contrast agents for ultrasound-assisted transfection of dendritic cells. Biomaterials 32, 9128–9135 (2011). 37. Frenkel, V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv. Drug Deliv. Rev. 60, 1193–1208 (2008). 38. Togtema, M. et al. Sonoporation Delivery of Monoclonal Antibodies against Human Papillomavirus 16 E6 Restores p53 Expression in Transformed Cervical Keratinocytes. PLoS One 7, e50730 (2012). 39. Zhang, C.-B. et al. Enhancement Effect of Ultrasound-Induced Microbubble Cavitation on Branched Polyethylenimine-Mediated VEGF165 Transfection With Varied N/P Ratio. Ultrasound Med. Biol. 39, 161–171 (2013). 40. Lentacker, I., DeCock, I., Deckers, R., DeSmedt, S. C. &Moonen, C. T. W. Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms. Adv. Drug Deliv. Rev. 72, 49–64 (2014). 41. Chu, P. C. et al. Neuromodulation accompanying focused ultrasound-induced blood-brain barrier opening. Sci. Rep. 5, 1–12 (2015). 42. Unga, J. &Hashida, M. Ultrasound induced cancer immunotherapy. Adv. Drug Deliv. Rev. 72, 144–153 (2014). 43. Umeda, N., Ueno, T., Pohlmeyer, C., Nagano, T. &Inoue, T. A Photocleavable Rapamycin Conjugate for Spatiotemporal Control of Small GTPase Activity. J. Am. Chem. Soc. 133, 12–14 (2011). 44. Zhang, X. et al. The specific and rapid labeling of cell surface proteins with recombinant FKBP-fused fluorescent proteins. Protein Cell 5, 800–803 (2014). 45. Fan, C. H. et al. Folate-conjugated gene-carrying microbubbles with focused ultrasound for concurrent blood-brain barrier opening and local gene delivery. Biomaterials 106, 46–57 (2016). 46. Ueno, T., Falkenburger, B. H., Pohlmeyer, C. &Inoue, T. Triggering Actin Comets Versus Membrane Ruffles: Distinctive Effects of Phosphoinositides on Actin Reorganization. Sci. Signal. 4, ra87–ra87 (2011). 47. Miyamoto, T. et al. Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. Nat. Chem. Biol. 8, 465–470 (2012). 48. Lin, Y.-C. et al. Rapidly Reversible Manipulation of Molecular Activity with Dual Chemical Dimerizers. Angew. Chemie Int. Ed. 52, 6450–6454 (2013). 49. Lin, Y.-C. et al. Chemically inducible diffusion trap at cilia reveals molecular sieve–like barrier. Nat. Chem. Biol. 9, 437–443 (2013). 50. Huang, Y. S. et al. Sonogenetic Modulation of Cellular Activities Using an Engineered Auditory-Sensing Protein. Nano Lett. 20, 1089–1100 (2020). 51. FRY, F. J., ADES, H. W. &FRY, W. J. Production of Reversible Changes in the Central Nervous System by Ultrasound. Science. 127, 83–84 (1958). 52. Menz, M. D., Oralkan, Ö., Khuri-Yakub, P. T. &Baccus, S. A. Precise neural stimulation in the retina using focused ultrasound. J. Neurosci. 33, 4550–4560 (2013). 53. Yoo, S.-S. et al. Focused ultrasound modulates region-specific brain activity. Neuroimage 56, 1267–1275 (2011). 54. Tufail, Y., Yoshihiro, A., Pati, S., Li, M. M. &Tyler, W. J. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat. Protoc. 6, 1453–1470 (2011). 55. Tufail, Y. et al. Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits. Neuron 66, 681–694 (2010). 56. King, R. L., Brown, J. R., Newsome, W. T. &Pauly, K. B. Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med. Biol. 39, 312–331 (2013). 57. Tsui, P.-H., Wang, S.-H. &Huang, C.-C. In vitro effects of ultrasound with different energies on the conduction properties of neural tissue. Ultrasonics 43, 560–565 (2005). 58. Foley, J. L., Little, J. W. &Vaezy, S. Image-guided high-intensity focused ultrasound for conduction block of peripheral nerves. Ann. Biomed. Eng. 35, 109–119 (2007). 59. Blackmore, J., Shrivastava, S., Sallet, J., Butler, C. R. &Cleveland, R. O. Ultrasound Neuromodulation: A Review of Results, Mechanisms and Safety. Ultrasound Med. Biol. 45, 1509–1536 (2019). 60. Li, F. et al. Dynamics and mechanisms of intracellular calcium waves elicited by tandem bubble-induced jetting flow. Proc. Natl. Acad. Sci. 115, E353–E362 (2018). 61. Pan, Y. et al. Mechanogenetics for the remote and noninvasive control of cancer immunotherapy. Proc. Natl. Acad. Sci. U. S. A. 115, 992–997 (2018). 62. Willmann, J. K. et al. Targeted Microbubbles for Imaging Tumor Angiogenesis: Assessment of Whole-Body Biodistribution with Dynamic Micro-PET in Mice. Radiology 249, 212–219 (2008). 63. Sirsi, S. R. &Borden, M. A. Microbubble compositions, properties and biomedical applications. Bubble Sci. Eng. Technol. 1, 3–17 (2009). 64. Ng, A. &Swanevelder, J. Resolution in ultrasound imaging. Contin. Educ. Anaesthesia, Crit. Care Pain 11, 186–192 (2011). 65. Strobel, S. A. Ribozyme chemogenetics. Biopolymers 48, 65–81 (1998). 66. Strader, C. D. et al. Allele-specific activation of genetically engineered receptors. J. Biol. Chem. 266, 5–8 (1991). 67. Chen, X. et al. The first structure-activity relationship studies for designer receptors exclusively activated by designer drugs. ACS Chem. Neurosci. 6, 476–484 (2015). 68. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. &Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. 104, 5163–5168 (2007). 69. Whissell, P. D., Tohyama, S. &Martin, L. J. The Use of DREADDs to Deconstruct Behavior. Front. Genet. 7, 1–15 (2016). 70. Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011). 71. Zhu, H. et al. Chemogenetic inactivation of ventral hippocampal glutamatergic neurons disrupts consolidation of contextual fear memory. Neuropsychopharmacology 39, 1880–1892 (2014). 72. Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science. 357, 503–507 (2017). 73. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. U. S. A. 100, 13940–13945 (2003). 74. Bi, A. et al. Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration. Neuron 50, 23–33 (2006). 75. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. &Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005). 76. Pathak, G. P., Vrana, J. D. &Tucker, C. L. Optogenetic control of cell function using engineered photoreceptors. Biol. Cell 105, 59–72 (2013). 77. Valon, L., Marín-Llauradó, A., Wyatt, T., Charras, G. &Trepat, X. Optogenetic control of cellular forces and mechanotransduction. Nat. Commun. 8, 14396 (2017). 78. Han, X. et al. Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain. Neuron 62, 191–198 (2009). 79. Bernstein, J. G. &Boyden, E. S. Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn. Sci. 15, 592–600 (2011). 80. Ruan, J. &Prasad, P. The Effects of Skull Thickness Variations on Human Head Dynamic Impact Responses. SAE Tech. Pap. 45, (2001). 81. Douplik, A., Saiko, G., Schelkanova, I. &Tuchin, V.V. The response of tissue to laser light. Lasers for Medical Applications: Diagnostics, Therapy and Surgery (Woodhead Publishing Limited, 2013). doi:10.1533/9780857097545.1.47. 82. Ung, K. &Arenkiel, B. R. Fiber-optic Implantation for Chronic Optogenetic Stimulation of Brain Tissue. J. Vis. Exp. 1–6 (2012) doi:10.3791/50004. 83. Long, X., Ye, J., Zhao, D. &Zhang, S. J. Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor. Sci. Bull. 60, 2107–2119 (2015). 84. Deng, Z.De, Lisanby, S. H. &Peterchev, A.V. Coil design considerations for deep transcranial magnetic stimulation. Clin. Neurophysiol. 125, 1202–1212 (2014). 85. Gomez, L. J., Goetz, S. M. &Peterchev, A.V. Design of transcranial magnetic stimulation coils with optimal trade-off between depth, focality, and energy. J. Neural Eng. 15, 1–33 (2018). 86. Nimpf, S. &Keays, D. A. Is magnetogenetics the new optogenetics? EMBO J. 36, 1643–1646 (2017). 87. Pang, K. et al. MagR alone is insufficient to confer cellular calcium responses to magnetic stimulation. Front. Neural Circuits 11, 1–13 (2017). 88. Moon, J. et al. Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling. Adv. Funct. Mater. 2000577, 1–9 (2020). 89. Rosenfeld, D. et al. Transgene-free remote magnetothermal regulation of adrenal hormones. Sci. Adv. 6, eaaz3734 (2020). 90. Gregurec, D. et al. Magnetic Vortex Nanodiscs Enable Remote Magnetomechanical Neural Stimulation. ACS Nano 14, 8036–8045 (2020). 91. Ibsen, S., Tong, A., Schutt, C., Esener, S. &Chalasani, S. H. Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat. Commun. 6, 1–12 (2015). 92. Benjamin M. Davis, Glen F. Rall, M. J. S. Molecular Engineering of Acoustic Protein Nanostructures. ACS Nano. 176, 139–148 (2016). 93. Bourdeau, R. W. et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature 553, 86–90 (2018). 94. Maresca, D. et al. Biomolecular Ultrasound and Sonogenetics. Annu. Rev. Chem. Biomol. Eng. 9, 229–252 (2018). 95. Prieto, M. L., Firouzi, K., Khuri-Yakub, B. T. &Maduke, M. Activation of Piezo1 but Not NaV1.2 Channels by Ultrasound at 43 MHz. Ultrasound Med. Biol. 44, 1217–1232 (2018). 96. Ye, J. et al. Ultrasonic Control of Neural Activity through Activation of the Mechanosensitive Channel MscL. Nano Lett. 18, 4148–4155 (2018). 97. Lawrence, J. P. Physics and instrumentation of ultrasound. Crit. Care Med. 35, (2007). 98. Lim, D. J. Functional structure of the organ of Corti: a review. Hear. Res. 22, 117–146 (1986). 99. Davis, H. An active process in cochlear mechanics. Hear. Res. 9, 79–90 (1983). 100. Ruggero, M. A. Cochlear Delays and Traveling Waves: Comments on ‘Experimental Look at Cochlear Mechanics’: [A. Dancer, Audiology 1992;31:301-312]. Int. J. Audiol. 33, 131–142 (1994). 101. Ashmore, J. Cochlear outer hair cell motility. Physiol. Rev. 88, 173–210 (2008). 102. Alper, S. L. &Sharma, A. K. The SLC26 gene family of anion transporters and channels. Mol. Aspects Med. 34, 494–515 (2013). 103. Fettiplace, R. &Hackney, C. M. The sensory and motor roles of auditory hair cells. Nat. Rev. Neurosci. 7, 19–29 (2006). 104. Cheatham, M. A., Huynh, K. H., Gao, J., Zuo, J. &Dallos, P. Cochlear function in Prestin knockout mice. J. Physiol. 560, 821–830 (2004). 105. Liu, X. Z. et al. Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum. Mol. Genet. 12, 1155–1162 (2003). 106. Mutai, H. et al. Diverse spectrum of rare deafness genes underlies early-childhood hearing loss in Japanese patients: A cross-sectional, multi-center next-generation sequencing study. Orphanet J. Rare Dis. 8, 1 (2013). 107. Takahashi, S., Cheatham, M. A., Zheng, J. &Homma, K. The R130S mutation significantly affects the function of prestin, the outer hair cell motor protein. J. Mol. Med. 94, 1053–1062 (2016). 108. Rossiter, S. J., Zhang, S. &Liu, Y. Prestin and high frequency hearing in mammals. Commun. Integr. Biol. 4, 236–239 (2011). 109. Liu, Z., Qi, F. Y., Zhou, X., Ren, H. Q. &Shi, P. Parallel sites implicate functional convergence of the hearing gene prestin among echolocating mammals. Mol. Biol. Evol. 31, 2415–2424 (2014). 110. Dallos, P. &Fakler, B. Prestin, a new type of motor protein. Nat. Rev. Mol. Cell Biol. 3, 104–111 (2002). 111. Ludwig, J. et al. Reciprocal electromechanical properties of rat prestin: The motor molecule from rat outer hair cells. Proc. Natl. Acad. Sci. U. S. A. 98, 4178–4183 (2001). 112. Zhao, Y. et al. An Expanded Palette of Genetically Encoded Ca2+ Indicators. Science. 333, 1888–1891 (2011). 113. Sato, T., Shapiro, M. G. &Tsao, D. Y. Ultrasonic Neuromodulation Causes Widespread Cortical Activation via an Indirect Auditory Mechanism. Neuron 98, 1031-1041.e5 (2018). 114. Li, Y., Ding, D., Jiang, H., Fu, Y. &Salvi, R. Co-administration of Cisplatin and Furosemide Causes Rapid and Massive Loss of Cochlear Hair Cells in Mice. Neurotox. Res. 20, 307–319 (2011). 115. Sundquist, S. J. &Nisenbaum, L. K. Fast Fos: Rapid protocols for single- and double-labeling c-Fos immunohistochemistry in fresh frozen brain sections. J. Neurosci. Methods 141, 9–20 (2005). 116. Fan, Z., Liu, H., Mayer, M. &Deng, C. X. Spatiotemporally controlled single cell sonoporation. Proc. Natl. Acad. Sci. U. S. A. 109, 16486–16491 (2012). 117. Marino, A. et al. Piezoelectric Nanoparticle-Assisted Wireless Neuronal Stimulation. ACS Nano 9, 7678–7689 (2015). 118. Zhang, Y., Moeini-Naghani, I., Bai, J., Santos-Sacchi, J. &Navaratnam, D. S. Tyrosine motifs are required for prestin basolateral membrane targeting. Biol. Open 4, 197–205 (2015). 119. Greeson, J. N., Organ, L. E., Pereira, F. A. &Raphael, R. M. Assessment of prestin self-association using fluorescence resonance energy transfer. Brain Res. 1091, 140–150 (2006). 120. Mio, K. et al. The motor protein prestin is a bullet-shaped molecule with inner cavities. J. Biol. Chem. 283, 1137–1145 (2008). 121. Zheng, J. et al. The C-terminus of prestin influences nonlinear capacitance and plasma membrane targeting. J. Cell Sci. 118, 2987–2996 (2005). 122. Jacques-Fricke, B. T., Seow, Y., Gottlieb, P. A., Sachs, F. &Gomez, T. M. Ca2+ influx through mechanosensitive channels inhibits neurite outgrowth in opposition to other influx pathways and release from intracellular stores. J. Neurosci. 26, 5656–5664 (2006). 123. Guo, H. et al. Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway. Neuron 98, 1020-1030.e4 (2018). 124. Welm, B. E. et al. Inducible dimerization of FGFR1: development of a mouse model to analyze progressive transformation of the mammary gland. J. Cell Biol. 157, 703–714 (2002). 125. Liu, K. J., Arron, J. R., Stankunas, K., Crabtree, G. R. &Longaker, M. T. Chemical rescue of cleft palate and midline defects in conditional GSK-3β mice. Nature 446, 79–82 (2007). 126. Pan, M.-H., Lin, J., Prior, J. L. &Piwnica-Worms, D. Monitoring Molecular-Specific Pharmacodynamics of Rapamycin In vivo with Inducible Gal4->Fluc Transgenic Reporter Mice. Mol. Cancer Ther. 9, 2752–2760 (2010). 127. Xu, T., Johnson, C. A., Gestwicki, J. E. &Kumar, A. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization. Nat. Protoc. 5, 1831–1843 (2010). 128. Haruki, H., Nishikawa, J. &Laemmli, U. K. The Anchor-Away Technique: Rapid, Conditional Establishment of Yeast Mutant Phenotypes. Mol. Cell 31, 925–932 (2008). 129. Villanueva, F. S. et al. Microbubbles Targeted to Intercellular Adhesion Molecule-1 Bind to Activated Coronary Artery Endothelial Cells. Circulation 98, 1–5 (1998). 130. Zhou, Y. et al. Targeted Antiangiogenesis Gene Therapy Using Targeted Cationic Microbubbles Conjugated with CD105 Antibody Compared with Untargeted Cationic and Neutral Microbubbles. Theranostics 5, 399–417 (2015). 131. Mitragotri, S. &Kost, J. Low-frequency sonophoresis: A review. Adv. Drug Deliv. Rev. 56, 589–601 (2004). 132. Katz, N. P., Shapiro, D. E., Herrmann, T. E., Kost, J. &Custer, L. M. Rapid Onset of Cutaneous Anesthesia with EMLA Cream after Pretreatment with a New Ultrasound-Emitting Device. Anesth. Analg. 98, 371–376 (2004). 133. Abrahao, A. et al. First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat. Commun. 10, 1–9 (2019). 134. Downs, M. E. et al. Long-term safety of repeated blood-brain barrier opening via focused ultrasound with microbubbles in non-human primates performing a cognitive task. PLoS One 10, 1–26 (2015). 135. Krasovitski, B., Frenkel, V., Shoham, S. &Kimmel, E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl. Acad. Sci. U. S. A. 108, 3258–3263 (2011). 136. Plaksin, M., Shoham, S. &Kimmel, E. Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation. Phys. Rev. X 4, 1–10 (2014). 137. Keller, J. P. et al. Functional regulation of the SLC26-family protein prestin by calcium/calmodulin. J. Neurosci. 34, 1325–1332 (2014). 138. Hayner, M. &Hynynen, K. Numerical analysis of ultrasonic transmission and absorption of oblique plane waves through the human skull. J. Acoust. Soc. Am. 110, 3319–3330 (2001). 139. White, P. J., Clement, G. T. &Hynynen, K. Local frequency dependence in transcranial ultrasound transmission. Phys. Med. Biol. 51, 2293–2305 (2006). 140. Patrick G Hogan, Lin Chen, Julie Nardone, A. R. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003). 141. Wang, Y. et al. All-optical regulation of gene expression in targeted cells. Sci. Rep. 4, 5346 (2015).
|