帳號:guest(3.144.88.67)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林孟韋
作者(外文):Lin, Meng-Wei
論文名稱(中文):以全底泥萃取物評析人類細胞毒性與健康風險
論文名稱(外文):Cytotoxicity and human health risk evaluated by whole sediment extraction
指導教授(中文):詹鴻霖
周秀專
指導教授(外文):Chan, Hong-Lin
Chou, Hsiu-Chuan
口試委員(中文):鄭兆勝
楊樹森
蕭大智
口試委員(外文):Cheng, Chao-Sheng
Young, Shuh-Sen
學位類別:博士
校院名稱:國立清華大學
系所名稱:生技產業博士學位學程
學號:104080561
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:121
中文關鍵詞:底泥環境物染氧化壓力肝醣合成細胞凋亡
外文關鍵詞:SedimentEnvironmental pollutionReactive oxygen speciesGlycogenesisApoptosis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:33
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究的主要目的為建立以底泥與人類細胞株為檢測樣本來評估環境累積毒性對人類健康的影響。工業化的發展加劇了對環境的迫害,而底泥是所有環境污染物的最終儲存庫,因此底泥是評估環境污染物經由生物累積對人類健康影響很好的樣本。新竹科學園區是世界著名的半導體製造工業園區,客雅溪流經新竹科學園區和新竹市區。因半導體產業所衍生的工業廢棄物具有引發癌症、出生缺陷與其他嚴重疾病等,因此客雅溪的水質評估值得被關注。雖然過去有許多研究表明魚類等底棲生物的退化、生長與底泥的污染有關聯,但探討底泥汙染對人類健康的影響知之甚少。因此,本研究以客雅溪三個不同都市發展程度區域的底泥樣本探討工業發展衍生環境污染物對多種不同人類細胞株的影響。採樣點分別:上游為未開發區,中游為生活/工業廢水排放口,下游為生活/工業廢水累積區。我們的研究結果顯示,客雅溪下游的底泥萃取物比中、上游的底泥萃取物更具細胞毒性。下游底泥萃取物顯著增加了所有細胞中的活性氧物質的表現。而氧化壓力的累積易誘發改變細胞的基本行為能力,如細胞活性、細胞貼附能力與細胞爬行能力。根據MTT細胞存活率試驗結果顯示下游底泥萃取物顯著降低了腦、口腔、肺、乳腺、肝、胰腺、子宮頸、前列腺和結腸直腸細胞的活性。此外,與其他流域相比,下游底泥萃取物抑制大多數細胞的貼附能力與傷口癒合能力。肝臟是環境毒素的最終目標,越來越多的流行病學統計指出,肝臟代謝綜合症的成因與暴露於環境污染有很大的關聯。因此,本研究試圖證實底泥污染物對肝損傷的影響。我們的研究結果表明,下游底泥萃取物比其他區域更具肝細胞毒性。同時,下游底泥萃取物顯著增加肝細胞的活性氧類總量,並引起線粒體功能喪失,導致細胞凋亡,更進而造成血清中天門冬胺酸轉胺酶(GOT)/丙胺酸轉胺酶(GPT)蛋白表現增加。此外,在本研究中,我們還發現下游底泥萃取會通過抑制胰島素接受器受質-1 (IRS-1)/ 蛋白激酶B (AKT)/ 肝醣合成酶激酶3 (GSK3β),進而影響肝醣合成酶(GYS)活性,以減少肝醣合成。本研究是首次以底泥為樣本探討環境累積毒性對人體健康的影響。我們誠摯地希望本研究能為環境汙染與大眾健康提供新的科學依據,並以全球視角應對公共衛生的挑戰。
The main objective of this study was to establish a human cell-based platform to assess the effects of sediment toxicity on human cell lines. Sediments are long-term repositories for environmental pollutants via Environmental cycles, sediment pollution also has increased with industrialization. Sediment is a good sample to evaluate the effect of environmental pollutants on human health via bioaccumulation. The Hsinchu Science Park is one of the most prominent semiconductor manufacturing centers in the world, and the Ke-Ya River flows through Hsinchu Science Park and the Hsinchu urban district. Because semiconductor wastes potentially contribute to higher-than-normal rates of cancers, birth defects, and serious diseases, the quality assessment of the Ke-Ya River has prompted widespread concerns. While previous studies have shown an association between the degradation of fish populations and sediment pollutants, very little is known about the issues on human health. Herein, the effects of sediment from three sediment-sampling sites of the Ke-Ya River on 11 different human cell lines were directly evaluated. The upstream represents the undeveloped zone, the middle-stream represents the household/industrial wastewater zone, and the downstream represents the accumulation zone. Our results indicated that the sediment pollution of the downstream Ke-Ya River was more cytotoxic than that of the middle stream and upstream. Downstream sediment extract (DSE) significantly increased reactive oxygen species (ROS) levels across all cell types. Accordingly, oxidative stress can trigger redox-sensitive pathways and alter essential biological processes such as cell viability, cell adhesion, and cell motility. Importantly, the MTT assay indicated that DSE significantly decreased the viability of brain, oral, lung, breast, liver, pancreatic, cervical, prostate, and colorectal cells. Furthermore, the adhesive ability and wound healing ability of most cells were greatly reduced in the presence of DSE compared to other conditions. Liver is the final target of environmental toxins; more and more epidemiological studies had shown that liver metabolic syndrome including the impairment of hepatic glycogen synthesis have relentlessly risen by exposure to environmental pollutants. Therefore, this study also sought to confirm the effects of sediment pollutants on liver damage. Our results indicated that the industrial wastewater sediment (downstream) was more cytotoxic than other zones. DSE significantly increased reactive oxygen species (ROS) levels, caused mitochondrial dysfunction, lead to cell apoptosis, and result in glutamic oxaloacetic transaminase (GOT)/ Glutamic pyruvic transaminase (GPT) protein released. Additionally, to elucidate the underlying mechanism by sediment pollutants perturb hepatic glycogen synthesis, we investigated the effect of o different sediment samples from pollution situations on glycogen synthesis in liver cell lines. In this study, we found that downstream sediment extract induced more severe impairments in liver cells, and disturber glycogen synthesis than in other conditions; these include decreased hepatic glycogen synthesis via inhibition and IRS-1/AKT/glycogen synthase kinase3β (GSK3β) mediated glycogen synthase (GYS) inactivation. This study shows the results of the first analyses completed on the sediment cytotoxicity in human cells, and stimulated ROS levels are crucial for cellular life, also provides the first in vitro evidence for sediment accumulated toxicity in disturbance of liver glycogen synthesis and caused hepatic cell damage. We sincerely hope that our study provides a scientific basis for further investigations with a global perspective on public health challenges.
中文摘要 I
Abstract III
Acknowledgement V
Table of Contents VII
List of Figures and Tables IX
Abbreviations XI
Chapter 1 Introduction 1
1.1 Environmental pollution and human health 1
1.2 Sediment quality and urban-industrial pollution 3
1.3 Sediment-associated pollutants and cytotoxicity 5
1.4 Environmental pollutants and liver damage 6
Chapter 2 Materials and Methods 7
2.1 Sediment sampling locations and extraction 7
2.2 Sediment physical and chemical property analysis 9
2.3 Sediment pollutants analysis 10
2.4 Cell lines and cell culture 11
2.5 MTT cell viability assay 12
2.6 Reactive oxygen species (ROS) detection 13
2.7 Cell adhesion assay 13
2.8 Wound healing assay 14
2.9 JC-10 assay 14
2.10 Apoptosis assay 14
2.11 Glycogen colorimetric assay 15
2.12 Immunoblotting analysis 15
2.13 GOT/GPT detection 16
2.14 Statistical analysis 16
Chapter 3 Results 17
3.1 Sediment physical & chemical characteristics 17
3.2 Sediment pollution composition 19
3.3 Sediment extract toxicity and cell viability 21
3.4 Sediment extract effect on ROS production 22
3.5 Sediment extract effect on cell adhesion ability 24
3.6 Sediment extract effect on cell wound healing 25
3.7 The cytotoxic effect of sediment extract on liver cell lines 29
3.8 The impact of sediment extract on ROS production 32
3.9 The impact of sediment extract on mitochondrial membrane potential 34
3.10 The impact of sediment extract on GOT/GPT protein release 36
3.11 The impact of sediment extract on glycogenesis and glycogen production 37
Chapter 4 Discussion 41
Chapter 5 Concussion 48
Chapter 6 Reference 50
Appendix 55
The graphic abstract of previous studies 56
Publications list 58
Frist author full text 61
1. Suzuki, T., Hidaka, T., Kumagai, Y. & Yamamoto, M. Environmental pollutants and the immune response. Nature immunology 21, 1486-1495 (2020).
2. Pogribny, I.P. & Rusyn, I. Environmental toxicants, epigenetics, and cancer. Advances in experimental medicine and biology 754, 215-232 (2013).
3. Kim, J.T. & Lee, H.K. Metabolic syndrome and the environmental pollutants from mitochondrial perspectives. Reviews in endocrine & metabolic disorders 15, 253-262 (2014).
4. Van Geest, J.L., Poirier, D.G., Sibley, P.K. & Solomon, K.R. Measuring bioaccumulation of contaminants from field-collected sediment in freshwater organisms: a critical review of laboratory methods. Environmental toxicology and chemistry 29, 2391-2401 (2010).
5. Day, D.D. et al. Toxicity of lead-contaminated sediment to mute swans. Archives of environmental contamination and toxicology 44, 510-522 (2003).
6. Mennillo, E., Adeogun, A.O. & Arukwe, A. Quality screening of the Lagos lagoon sediment by assessing the cytotoxicity and toxicological responses of rat hepatoma H4IIE and fish PLHC-1 cell-lines using different extraction approaches. Environmental research 182, 108986 (2020).
7. Montano, M., Weiss, J., Hoffmann, L., Gutleb, A.C. & Murk, A.J. Metabolic activation of nonpolar sediment extracts results in enhanced thyroid hormone disrupting potency. Environmental science & technology 47, 8878-8886 (2013).
8. Nriagu, J.O. Encyclopedia of environmental health. (Elsevier, 2019).
9. Shinya, M., Tsuchinaga, T., Kitano, M., Yamada, Y. & Ishikawa, M. Characterization of heavy metals and polycyclic aromatic hydrocarbons in urban highway runoff. Water science and technology 42, 201-208 (2000).
10. Murakami, M., Yamada, J., Kumata, H. & Takada, H. Sorptive behavior of nitro-PAHs in street runoff and their potential as indicators of diesel vehicle exhaust particles. Environmental science & technology 42, 1144-1150 (2008).
11. Steingraber, S. Living Downstream: An Ecologist Looks at Cancer and the Environment. (Addison-Wesley Publishing, 1997).
12. Bender, T.J. et al. Cancer incidence among semiconductor and electronic storage device workers. Occupational and environmental medicine 64, 30-36 (2007).
13. Park, D.-U. et al. Occupational Characteristics of Semiconductor Workers with Cancer and Rare Diseases Registered with a Workers' Compensation Program in Korea. Safety and health at work 10, 347-354 (2019).
14. Park, D.-U. Challenges and issues of cancer risk on workers in the semiconductor industry. Journal of Korean Society of Occupational and Environmental Hygiene 29, 278-288 (2019).
15. Kim, M.-H., Kim, H. & Paek, D. The health impacts of semiconductor production: an epidemiologic review. International journal of occupational and environmental health 20, 95-114 (2014).
16. Lin, S. & Hsieh, I.-J. Occurrences of green oyster and heavy metals contaminant levels in the Sien-San area, Taiwan. Marine Pollution Bulletin 38, 960-965 (1999).
17. Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R. & Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in pharmacology 12 (2021).
18. Jomova, K. & Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 283, 65-87 (2011).
19. Cheng, L., Li, J., Cheng, J. & Wu, Z. Dibutyl phthalate-induced activation of ROS and ERK1/2 causes hepatic and renal damage in Kunming mice. Human & experimental toxicology 38, 938-950 (2019).
20. Cho, Y.J., Park, S.B. & Han, M. Di-(2-ethylhexyl)-phthalate induces oxidative stress in human endometrial stromal cells in vitro. Molecular and cellular endocrinology 407, 9-17 (2015).
21. Hurd, T.R., DeGennaro, M. & Lehmann, R. Redox regulation of cell migration and adhesion. Trends in cell biology 22, 107-115 (2012).
22. Janiszewska, M., Primi, M.C. & Izard, T. Cell adhesion in cancer: Beyond the migration of single cells. The Journal of biological chemistry 295, 2495-2505 (2020).
23. Arciello, M. et al. Environmental pollution: a tangible risk for NAFLD pathogenesis. International journal of molecular sciences 14, 22052-22066 (2013).
24. Xiao, J. et al. Global liver disease burdens and research trends: Analysis from a Chinese perspective. Journal of hepatology 71, 212-221 (2019).
25. Zheng, F. et al. Perfluorooctanoic acid exposure disturbs glucose metabolism in mouse liver. Toxicology and applied pharmacology 335, 41-48 (2017).
26. Petersen, M.C., Vatner, D.F. & Shulman, G.I. Regulation of hepatic glucose metabolism in health and disease. Nature reviews. Endocrinology 13, 572-587 (2017).
27. Majewska, E. & Szeliga, M. AKT/GSK3beta Signaling in Glioblastoma. Neurochemical research 42, 918-924 (2017).
28. Srut, M. et al. Genotoxicity of marine sediments in the fish hepatoma cell line PLHC-1 as assessed by the Comet assay. Toxicology in vitro : an international journal published in association with BIBRA 25, 308-314 (2011).
29. McLean, E. Soil pH and lime requirement. Methods of soil analysis. Part 2. Chemical and microbiological properties, 199-224 (1982).
30. 11465, I. (International Organization for Standardization (ISO) Geneva, 1993).
31. Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal 54, 464-465 (1962).
32. Beretta, A.N. et al. Soil texture analyses using a hydrometer: modification of the Bouyoucos method. Ciencia e investigación agraria 41, 263-271 (2014).
33. Nelson, D. & Sommers, L.E. Total carbon, organic carbon, and organic matter 1. Methods of soil analysis. Part 2. Chemical and microbiological properties, 539-579 (1982).
34. Method, E. (US Environmental Protection Agency Washington, DC, USA, 1986).
35. Burton Jr, G.A. Sediment quality criteria in use around the world. Limnology 3, 65-76 (2002).
36. Khalili, A.A. & Ahmad, M.R. A Review of Cell Adhesion Studies for Biomedical and Biological Applications. International journal of molecular sciences 16, 18149-18184 (2015).
37. Miyake, S. The mechanism of release of hepatic enzymes in various liver diseases. II. Altered activity ratios of GOT to GPT in serum and liver of patients with liver diseases. Acta medica Okayama 33, 343-358 (1979).
38. Huang, X.-J. et al. Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors 6, 756-782 (2006).
39. Mearns, A.J. et al. Effects of pollution on marine organisms. Water environment research : a research publication of the Water Environment Federation 92, 1510-1532 (2020).
40. Mackay, D., Celsie, A.K.D., Powell, D.E. & Parnis, J.M. Bioconcentration, bioaccumulation, biomagnification and trophic magnification: a modelling perspective. Environmental science. Processes & impacts 20, 72-85 (2018).
41. Shea, J., Moran, T. & Dehn, P. A bioassay for metals utilizing a human cell line. Toxicology in Vitro 22, 1025-1031 (2008).
42. Higley, E. et al. Endocrine disrupting, mutagenic, and teratogenic effects of upper Danube River sediments using effect‐directed analysis. Environmental toxicology and chemistry 31, 1053-1062 (2012).
43. Sposito, G. The chemistry of soils. (Oxford university press, 2008).
44. Ersahin, S., Gunal, H., Kutlu, T., Yetgin, B. & Coban, S. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution. Geoderma 136, 588-597 (2006).
45. Fuerhacker, M., Haile, T.M., Monai, B. & Mentler, A. Performance of a filtration system equipped with filter media for parking lot runoff treatment. Desalination 275, 118-125 (2011).
46. Wuana, R.A. & Okieimen, F.E. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International scholarly research notices 2011 (2011).
47. Macdonald, D.D., Carr, R.S., Calder, F.D., Long, E.R. & Ingersoll, C.G. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5, 253-278 (1996).
48. Tomiyasu, T. et al. Mercury contamination in the Yatsushiro Sea, south-western Japan: spatial variations of mercury in sediment. Science of the total environment 257, 121-132 (2000).
49. Lin, M.-W. et al. Urban sediment pollutants alternate human cell essential behaviour through promoting oxidative damage. Ecotoxicology and environmental safety 229, 113065 (2022).
50. Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S. & Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organization Journal 5, 9-19 (2012).
51. Leme, D.M. et al. Cytotoxicity of water-soluble fraction from biodiesel and its diesel blends to human cell lines. Ecotoxicology and environmental safety 74, 2148-2155 (2011).
52. Humphries, M.J. Cell adhesion assays. Methods in molecular biology 139, 279-285 (2000).
53. Hillis, G.S. & Flapan, A.D. Cell adhesion molecules in cardiovascular disease: a clinical perspective. Heart 79, 429-431 (1998).
54. Crawford, J.M. & Watanabe, K. Cell adhesion molecules in inflammation and immunity: relevance to periodontal diseases. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists 5, 91-123 (1994).
55. Franz, C.M., Jones, G.E. & Ridley, A.J. Cell migration in development and disease. Dev Cell 2, 153-158 (2002).
56. Sternlicht, M.D., Bissell, M.J. & Werb, Z. The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter. Oncogene 19, 1102-1113 (2000).
57. Worbs, T., Hammerschmidt, S.I. & Forster, R. Dendritic cell migration in health and disease. Nature reviews. Immunology 17, 30-48 (2017).
58. Guo, Q., Li, N. & Xie, S. Heavy metal spill influences bacterial communities in freshwater sediments. Archives of microbiology (2019).
59. Olsen, M., Fjeld, E. & Lydersen, E. The influence of a submerged meadow on uptake and trophic transfer of legacy mercury from contaminated sediment in the food web in a brackish Norwegian fjord. The Science of the total environment 654, 209-217 (2019).
60. Kammann, U. et al. Genotoxic and teratogenic potential of marine sediment extracts investigated with comet assay and zebrafish test. Environ Pollut 132, 279-287 (2004).
61. Suski, J.M. et al. Relation between mitochondrial membrane potential and ROS formation, in Mitochondrial bioenergetics 183-205 (Springer, 2012).
62. Redza-Dutordoir, M. & Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et biophysica acta 1863, 2977-2992 (2016).
63. Di Meo, S., Napolitano, G. & Venditti, P. Physiological and Pathological Role of ROS: Benefits and Limitations of Antioxidant Treatment. International journal of molecular sciences 20 (2019).
64. Nordlie, R.C., Foster, J.D. & Lange, A.J. Regulation of glucose production by the liver. Annual review of nutrition 19, 379-406 (1999).
65. Klover, P.J. & Mooney, R.A. Hepatocytes: critical for glucose homeostasis. The international journal of biochemistry & cell biology 36, 753-758 (2004).
66. Baldwin, D.R. & Marshall, W.J. Heavy metal poisoning and its laboratory investigation. Annals of clinical biochemistry 36, 267-300 (1999).
67. Ross, P.S. & Birnbaum, L.S. Integrated human and ecological risk assessment: a case study of persistent organic pollutants (POPs) in humans and wildlife. Human and Ecological Risk Assessment 9, 303-324 (2003).
68. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. & Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology 7, 60 (2014).
69. Jacob, J. & Cherian, J. Review of environmental and human exposure to persistent organic pollutants. (2013).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *