帳號:guest(3.15.18.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王佳琪
作者(外文):Wang, Jia-Chi
論文名稱(中文):開發偵測多巴胺釋放的分子探針
論文名稱(外文):The development of molecular probe for detecting dopamine release
指導教授(中文):桑自剛
指導教授(外文):Sang, Tzu-Kang
口試委員(中文):羅中泉
張慧雲
口試委員(外文):Lo, Chung-Chuan
Chang, Hui-Yun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:104080556
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:48
中文關鍵詞:多巴胺螢光探針單胺氧化酶B
外文關鍵詞:dopaminefluorescent probemonoamine oxidase B
相關次數:
  • 推薦推薦:0
  • 點閱點閱:26
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
多巴胺為一種單胺類神經傳導物質,負責調控動物的學習、記憶、認知、行動等功能,一旦多巴胺神經元的失調將會造成嚴重的中樞神經退化疾病,例如: 帕金森氏症。因此我們致力於發展偵測多巴胺水平的探針。先前本實驗室已成功開發偵測細胞內多巴胺水平的探針是以代謝多巴胺的人類單胺氧化酶 B (MAO B)為主體,結合綠色螢光蛋白(GFP)。氧化態MAO B的輔酶FAD能夠吸收488奈米的波段,造成GFP無法被激發產生螢光,我們稱此現象為「遮蔽效應(Shield effect)」。在本研究中我將應用之前的胞內探針之特性,進行細胞膜上的多巴胺探針開發,將MAO B及GFP透過穿膜蛋白表現在細胞表面。於免疫螢光染色結果發現完整的MAO B較難被帶到細胞膜表面,需要再透過修飾來減少MAO B穿膜部分對探針拓樸結構的影響。另外,我亦測試胞內探針在活體果蠅大腦的多巴胺即時動態,在功能性影像的實驗結果發現探針可以即時的偵測到大腦中外加的多巴胺訊號。多巴胺探針的開發可以幫助我們進行神經迴路的分析以及神經退化性疾病的研究,未來也能應用在臨床的診斷。
Dopamine is a neurotransmitter for regulating the behaviors including locomotion, memory, as well as cognition. The homeostasis of dopamine is vital for the nervous system. To explore dopamine circuit, we aim to develop a probe that could visualize the dopamine circuit in the brain. Through modifying a previous reported MMG1 probe from this lab, we are testing a series of plasma membrane probe designed for detecting dopamine release. These probes are modified from MMG1 of which the conjugation of a fluorescent protein, GFP, and an enzyme monoamine oxidase B (MAO B) that can catalyze dopamine oxidation via its co-factor FAD. The redox reaction of FAD could switch GFP fluorescence upon detecting dopamine release from dopaminergic neurons in vivo and has been coined as the shield effect. The early version of the probes was unsuccessful due to the inadequate topology. Here, I made some modifications of these probes with the goal to embed them in the plasma membrane with both MAO B and GFP facing the extracellular space. However, through the analyses of immunostaining results, I found the modified versions were unable to make MAO B facing outside. It seems that MAO B has some intrinsic limitation that blocks its targeting to the plasma membrane. Several prediction tools reveal a potent helical domain at the N terminus of MAO B that may be the sticking point. Despite these negative results in the attempt of making the probe for monitoring DA releasing, I have also validated the cytosolic probe, MMG1, in living brains using the functional imaging procedure. Real-time analyses showed the reversion of GFP signals upon an artificial manipulation of dopamine content in the live fly brains. We wish that with this molecular probe, a systematic study of how brain processes information in dopamine circuits, either in healthy or diseased conditions, could be implemented.
Abstract I
摘要 II
Acknowledgement III
Table of Contents IV
Introduction 1
Materials and Methods 7
Molecular Cloning 7
Cell culture 8
Transfection of HEK293 cell line 8
Immunostaining 9
MAO B activity assay 10
Fly strain for functional image 10
Fly brain dissection and fixation 11
Drug treatment and time series confocal scanning 11
Analysis of the functional image results 11
Results 12
The molecular probes (sp)MS70G and (sp)MS70G11 12
Make MAO B be presented on plasma membrane 14
Test the MAO B activity of spMCD4 on cell surface 15
Utilize GPI-anchored protein way to anchor MAO B on cell surface 16
Dopamine treatment in live fly brain elevate GFP signal of MMG1 17
Discussion 18
Figures 24
References 45

Binda, C., Newton-Vinson, P., Hubálek, F., Edmondson, D. and Mattevi, A. (2001). Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nature Structural Biology, 9(1), pp.22-26.
Binda, C., Hubálek, F., Li, M., Edmondson, D. and Mattevi, A. (2004). Crystal structure of human monoamine oxidase B, a drug target enzyme monotopically inserted into the mitochondrial outer membrane. FEBS Letters, 564(3), pp.225-228.

Cabantous, S., Terwilliger, T. and Waldo, G. (2005). Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nature Biotechnology, 23(1), pp.102-107. doi:10.1038/nbt1044

Caudle, W., Richardson, J., Wang, M., Taylor, T., Guillot, T., McCormack, A., Colebrooke, R., Di Monte, D., Emson, P. and Miller, G. (2007). Reduced Vesicular Storage of Dopamine Causes Progressive Nigrostriatal Neurodegeneration. Journal of Neuroscience, 27(30), pp.8138-8148.

Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S. and Smith, A. (2003). Functional Expression Cloning of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem Cells. Cell, 113(5), pp.643-655.

Chen, L., Ding, Y., Cagniard, B., Van Laar, A., Mortimer, A., Chi, W., Hastings, T., Kang, U. and Zhuang, X. (2008). Unregulated Cytosolic Dopamine Causes Neurodegeneration Associated with Oxidative Stress in Mice. Journal of Neuroscience, 28(2), pp.425-433.

Chen, X., Zaro, J. and Shen, W. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), pp.1357-1369.

Feinberg, E., VanHoven, M., Bendesky, A., Wang, G., Fetter, R., Shen, K. and Bargmann, C. (2008). GFP Reconstitution Across Synaptic Partners (GRASP) Defines Cell Contacts and Synapses in Living Nervous Systems. Neuron, 57(3), pp.353-363. doi 10.1016/j.neuron.2007.11.030

Giri, K., Rao, N., Cama, H. and Kumar, S. (1960). Studies on flavinadenine dinucleotide-synthesizing enzyme in plants. Biochemical Journal, 75(2), pp.381-386.

Gubernator, N., Zhang, H., Staal, R., Mosharov, E., Pereira, D., Yue, M., Balsanek, V., Vadola, P., Mukherjee, B., Edwards, R., Sulzer, D. and Sames, D. (2009). Fluorescent False Neurotransmitters Visualize Dopamine Release from Individual Presynaptic Terminals. Science, 324(5933), pp.1441-1444.

Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376. doi:10.1136/jnnp.2007.131045

Kalgutkar, A., Dalvie, D., Castagnoli,, N. and Taylor, T. (2001). Interactions of Nitrogen-Containing Xenobiotics with Monoamine Oxidase (MAO) Isozymes A and B: SAR Studies on MAO Substrates and Inhibitors. Chemical Research in Toxicology, 14(9), pp.1139-1162.
Kumakura, Y., Cumming, P., Vernaleken, I., Buchholz, H., Siessmeier, T., Heinz, A., Kienast, T., Bartenstein, P. and Grunder, G. (2007). Elevated [18F]Fluorodopamine Turnover in Brain of Patients with Schizophrenia: An [18F]Fluorodopa/Positron Emission Tomography Study. Journal of Neuroscience, 27(30), pp.8080-8087.

Li, M., Binda, C., Mattevi, A. and Edmondson, D. (2006). Functional Role of the “Aromatic Cage” in Human Monoamine Oxidase B: Structures and Catalytic Properties of Tyr435 Mutant Proteins. Biochemistry, 45(15), pp.4775-4784.

Liu, Q., Liu, S., Kodama, L., Driscoll, M. and Wu, M. (2012). Two Dopaminergic Neurons Signal to the Dorsal Fan-Shaped Body to Promote Wakefulness in Drosophila. Current Biology, 22(22), pp.2114-2123.

Lotharius, J. and Brundin, P. (2002). Pathogenesis of parkinson's disease: dopamine, vesicles and α-synuclein. Nature Reviews Neuroscience, 3(12), pp.932-942.

Meiser, J., Weindl, D. and Hiller, K. (2013). Complexity of dopamine metabolism. Cell Communication and Signaling, 11(1), p.34.

Mitoma, J. and Ito, A. (1992). Mitochondrial Targeting Signal of Rat Liver Monoamine Oxidase B Is Located at Its Carboxy Terminus. The Journal of Biochemistry, 111(1), pp.20-24.

Neumoin, A., Cohen, L., Arshava, B., Tantry, S., Becker, J., Zerbe, O. and Naider, F. (2009). Structure of a Double Transmembrane Fragment of a G-Protein-Coupled Receptor in Micelles. Biophysical Journal, 96(8), pp.3187-3196. doi: 10.1016/j.bpj.2009.01.012

Okumoto, S., Looger, L., Micheva, K., Reimer, R., Smith, S. and Frommer, W. (2005). Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proceedings of the National Academy of Sciences, 102(24), pp.8740-8745. doi:10.1073/pnas.0503274102

Paladino, S., Lebreton, S., Tivodar, S., Campana, V., Tempre, R. and Zurzolo, C. (2008). Different GPI-attachment signals affect the oligomerisation of GPI-anchored proteins and their apical sorting. Journal of Cell Science, 121(24), pp.4001-4007.

Robinson, D., Venton, B., Heien, M. and Wightman, R. (2003). Detecting Subsecond Dopamine Release with Fast-Scan Cyclic Voltammetry in Vivo. Clinical Chemistry, 49(10), pp.1763-1773.

Shapiro, M., Westmeyer, G., Romero, P., Szablowski, J., Küster, B., Shah, A., Otey, C., Langer, R., Arnold, F. and Jasanoff, A. (2010). Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nature Biotechnology, 28(3), pp.264-270. doi:10.1038/nbt.1609

Sinn, P., Hickey, M., Staber, P., Dylla, D., Jeffers, S., Davidson, B., Sanders, D. and McCray, P. (2003). Lentivirus Vectors Pseudotyped with Filoviral Envelope Glycoproteins Transduce Airway Epithelia from the Apical Surface Independently of Folate Receptor Alpha. Journal of Virology, 77(10), pp.5902-5910.
Stewart, B., Atwood, H., Renger, J., Wang, J. and Wu, C. (1994). Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. Journal of Comparative Physiology A, 175(2), pp.179-191.

Ueno, K., Suzuki, E., Naganos, S., Ofusa, K., Horiuchi, J. and Saitoe, M. (2017). Coincident postsynaptic activity gates presynaptic dopamine release to induce plasticity in Drosophila mushroom bodies. eLife, 6.

Vickrey, T., Condron, B. and Venton, B. (2009). Detection of Endogenous Dopamine Changes inDrosophila melanogasterUsing Fast-Scan Cyclic Voltammetry. Analytical Chemistry, 81(22), pp.9306-9313.

Yamamoto, S. and Seto, E. (2014). Dopamine Dynamics and Signaling in Drosophila: An Overview of Genes, Drugs and Behavioral Paradigms. Experimental Animals, 63(2), pp.107-119.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *