帳號:guest(3.135.212.157)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐凱平
作者(外文):Hsu, Kai-Ping
論文名稱(中文):以玻璃質化法為基礎超低溫保存小花睡蓮與四色睡蓮種子
論文名稱(外文):Cryopreservation of seeds of Nymphaea minuta and Nymphaea micrantha by vitrification-based methods
指導教授(中文):李家維
指導教授(外文):Li, Chia-Wei
口試委員(中文):黃貞祥
鄭惠春
口試委員(外文):NG, CHEN-SIANG
CHENG, HUI-CHUN
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:104080553
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:64
中文關鍵詞:超低溫保存小花睡蓮四色睡蓮植物玻璃化抗凍配方自由基抗氧化劑DNA甲基化
外文關鍵詞:cryopreservationNymphaea minutaNymphaea micranthaPVS3ROSantioxidantDNA methylation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
小花睡蓮(Nymphaea minuta)與四色睡蓮(Nymphaea micrantha)是廣熱帶睡蓮亞屬(Brachyceras)中的其中兩種,而這兩種睡蓮的種子都無法承受低溫與乾燥環境,也不能利用傳統儲存方法進行長期保存。因此這兩種種子被歸類為非正儲型(non-orthodox)種子,需要藉由超低溫保存(cryopreservation)的方式來保存。在本研究中,使用植物玻璃化抗凍配方3(plant vitrification solution 3, PVS3)的處理,以避免在種子中形成致命性的冰晶,來進行以玻璃化法為基礎的超低溫保存。兩個小時和三個小時的PVS3前處理分別對四色睡蓮與小花睡蓮的種子超低溫保存是最適合的處理時間。為了進一步提升超低溫保存的效果,嘗試先對種子部分脫水以提高讓細胞玻璃化的效率,並使用了抗氧化劑如穀胱甘肽(glutathione, GSH),添加到PVS3中以保護種子在一系列超低溫保存的處理過程中免於自由基產生的氧化傷害與進一步造成的細胞凋亡。本研究接著探討在經過不同前處理後超低溫保存的種子中,表觀基因(epigenetic)層級產生的變化。在兩種睡蓮種子中,進行超低溫保存後總體DNA甲基化(methylation)的比率普遍上升,因此推測改變DNA甲基化的比率或許可以改善超低溫保存後種子的活力。於是將超低溫保存後的四色睡蓮種子培養在含有去甲基化分子——5-氮胞咁的水溶液後,種子發芽率獲得提升。
Nymphaea minuta and Nymphaea micrantha are two species of waterlilies in Brachyceras subgenus. Both seeds are freezing and desiccation intolerant, and could not be stored by conventional method for long-term. Therefore, they were considered as non-orthodox seeds, which have to be conserved by cryopreservation. In this study, vitrification-based cryopreservation method was applied by using plant vitrification solution 3 (PVS3) to avoid lethal ice crystals formation. The 2hr and 3hr PVS3 pretreatment were most suitable for cryopreserved seeds of N. micrantha and N. minuta, separately. To further promote the efficacy of cryopreservation, partial dehydration was applied for enhance the efficiency of vitrification, and the antioxidant, glutathione (GSH) was added in PVS3 to prevent cryopreserved seeds from the oxidative damage and programmed cell death which was induced by reactive oxygen species (ROS). The changes of epigenetic states in cryopreserved seeds with different pretreatment were next investigated. The global DNA methylation rate of seeds increased after cryopreservation in both species. Therefore, it was considered that changing the DNA methylation rate might improve the viability of cryopreserved seeds. Then, the cryopreserved seeds of N. micrantha were treated with 5-azacytidine, a DNA-hypomethylating molecule, in recovery stage, and the germination rate increased.
摘要 ... II
Abstract ... III
誌謝 ... IV
Contents ... V
Abbreviations ... VII
Introduction
Current status of freshwater ecosystems and Nymphaea species ... 1
Characteristics of N. minuta and N. micrantha ... 2
Ex situ conservation strategy ... 4
Cryopreservation could be an effective way to store recalcitrant seeds ... 5
Reactive oxygen species and antioxidants are vital factors ... 8
Epigenetic changes may occur during cryopreservation ... 10
Materials and methods ... 12
Results
The storage behavior of N. minuta and N. micrantha seeds ... 17
Cryopreservation of N. minuta and N. micrantha with PVS3 treatment ... 18
The addition of antioxidants in PVS3 for cryopreservation ... 19
Cryopreservation of N. minuta and N. micrantha for medium- to long-term...20
Changes in global DNA methylation levels ... 21
Discussion ... 23
Conclusion ... 29
Figures and Tables ... 30
Supplementary data ... 43
Reference ... 46
Appendix ... 50
1. Hay, F., et al., Towards the ex situ conservation of aquatic angiosperms: a review of seed storage behaviour., in Seed biology: advances and applications. Proceedings of the Sixth International Workshop on Seeds, Merida, Mexico, 1999., M. Black, K.J. Bradford, and J. Vazquez-Ramos, Editors. 2000, CABI Publishing: UK.
2. Dalziell, E.L., Seed biology and ex situ storage behaviour of Australian Nymphaea (water lilies) implications for conservation, in School of Plant Biology. 2016, the University of Western Australia.
3. Dudgeon, D., et al., Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc, 2006. 81(2): p. 163-82.
4. Geist, J., Integrative freshwater ecology and biodiversity conservation. Ecological Indicators, 2011. 11(6): p. 1507-1516.
5. Abell, R., et al., Freshwater Ecoregions of the World: A New Map of Biogeographic Units for Freshwater Biodiversity Conservation. BioScience, 2008. 58(5): p. 403.
6. Les, D.H., Nymphaeales. ENCYCLOPEDIA OF LIFE SCIENCES, 2003.
7. Songpanich, P. and V. Hongtrakul, Intersubgeneric cross in Nymphaea spp. L. to develop a blue hardy waterlily. Scientia Horticulturae, 2010. 124(4): p. 475-481.
8. Donald H. Les, et al., Phylogeny, Classification and Floral Evolution of Water Lilies (Nymphaeaceae; Nymphaeales): A Synthesis of Non-molecular, rbcL, matK, and 18S rDNA Data. Systematic Botany, 1999. Vol. 24.
9. Chanderbali, A.S., et al., Evolving Ideas on the Origin and Evolution of Flowers: New Perspectives in the Genomic Era. Genetics, 2016. 202(4): p. 1255-65.
10. Landon, K., R.A. Edwards, and P.I. Nozaic, A NEW SPECIES OF WATERLILY (NYMPHAEA MINUTA, NYMPHAEACEAE) FROM MADAGASCAR. Sida, Contributions To Botany, 2006: p. 887-893.
11. Diop, F.N. and M.M. Ali, Nymphaea micrantha, in The IUCN Red List of Threatened Species 2010. 2010.
12. Löhne, C., J.H. Wiersema, and T. Borsch, The unusualOndinea, actually just another Australian water-lily ofNymphaeasubg.Anecphya (Nymphaeaceae). Willdenowia, 2009. 39(1): p. 55-58.
13. Pammenter, N.W. and P. Berjak, Physiology of Desiccation-Sensitive (Recalcitrant) Seeds and the Implications for Cryopreservation. International Journal of Plant Sciences, 2014. 175(1): p. 21-28.
14. Walters, C., et al., Plant science. Preservation of recalcitrant seeds. Science, 2013. 339(6122): p. 915-6.
15. Engelmann, F., Plant cryopreservation: Progress and prospects. In Vitro Cellular & Developmental Biology - Plant, 2004. 40(5): p. 427-433.
16. Hu, W.H., et al., Cryopreservation the seeds of a Taiwanese terrestrial orchid, Bletilla formosana (Hayata) Schltr. by vitrification. Botanical Studies, 2013. 54(1): p. 33.
17. Kaczmarczyk, A., et al., Current Issues in Plant Cryopreservation, in Current Frontiers in Cryobiology, I. Katkov, Editor. 2012, InTech.
18. Verleysen, H., E. Van Bockstaele, and P. Debergh, An encapsulation–dehydration protocol for cryopreservation of the azalea cultivar ‘Nordlicht’ (Rhododendron simsii Planch.). Scientia Horticulturae, 2005. 106(3): p. 402-414.
19. Engelmann, F., et al., The Development of Encapsulation Dehydration, in Plant Cryopreservation: A Practical Guide., B.M. Reed, Editor. 2008.
20. Sakai, A., D. Hirai, and T. Niino, Development of PVS-Based Vitrification and Encapsulation–Vitrification Protocols, in Plant Cryopreservation: A Practical Guide, D.J. Burritt, Editor. 2008.
21. Raju, G.A.R., et al., Vitrification: An Emerging Technique for Cryopreservation in Assisted Reproduction Programmes. Embryo Talk, 2006. 1(4): p. 210-227.
22. Nishizawa, S., et al., Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Science, 1993.
23. Kulus, D. and M. Zalewska, Cryopreservation as a tool used in long-term storage of ornamental species – A review. Scientia Horticulturae, 2014. 168: p. 88-107.
24. Teixeira, A.S., et al., Glass transition and heat capacity behaviors of plant vitrification solutions. Thermochimica Acta, 2014. 593: p. 43-49.
25. Chen, G.Q., et al., Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings. Cryobiology, 2015. 70(1): p. 38-47.
26. Zhang, D., et al., ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox. Plant Cell Rep, 2015. 34(9): p. 1499-513.
27. Gill, S.S. and N. Tuteja, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010. 48(12): p. 909-30.
28. Uchendu, E.E., et al., Antioxidant and anti-stress compounds improve regrowth of cryopreserved Rubus shoot tips. In Vitro Cellular & Developmental Biology - Plant, 2010. 46(4): p. 386-393.
29. Reed, B.M., E. Uchendu, and M.N. Normah, Are antioxidants effective for reducing oxidative stress during cryopreservation. 2012.
30. Uchendu, E.E. and E.R.J. Keller, MELATONIN-LOADED ALGINATE BEADS IMPROVE CRYOPRESERVATION OF YAM (Dioscorea alata and D. cayenensis). CryoLetters 2016. 37(2): p. 77-87.
31. Uchendu, E.E., et al., Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep, 2010. 29(1): p. 25-35.
32. Chen, G.-q., et al., Glutathione improves survival of cryopreserved embryogenic calli of Agapanthus praecox subsp. orientalis. Acta Physiologiae Plantarum, 2016. 38(10).
33. Uchendu, E.E., et al., Melatonin enhances the recovery of cryopreserved shoot tips of American elm (Ulmus americana L.). Journal of Pineal Research, 2013. 55: p. 435-442.
34. Zhao, Y., et al., Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. Journal of Pineal Research, 2011. 50: p. 83-88.
35. Plitta, B.P., et al., DNA methylation of Quercus robur L. plumules following cryo-pretreatment and cryopreservation. Plant Cell, Tissue and Organ Culture (PCTOC), 2013. 117(1): p. 31-37.
36. Chakrabarty, D., K.W. Yu, and K.Y. Paek, Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Science, 2003. 165(1): p. 61-68.
37. Nuc, K., M. Marszałek, and P.M. Pukacki, Cryopreservation changes the DNA methylation of embryonic axes of Quercus robur and Fagus sylvatica seeds during in vitro culture. Trees, 2016. 30(5): p. 1831-1841.
38. Michalak, M., et al., Global changes in DNA methylation in seeds and seedlings of Pyrus communis after seed desiccation and storage. PLoS One, 2013. 8(8): p. e70693.
39. Lechat, M.M., et al., Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel. J Exp Bot, 2015. 66(11): p. 3129-40.
40. Berjak, P. and N.W. Pammenter, Implications of the lack of desiccation tolerance in recalcitrant seeds. Front Plant Sci, 2013. 4: p. 478.
41. Lee, C.-H., Cryopreservation of seeds of blue waterlily (Nymphaea caerulea) using glutathione adding plant vitrification solution, PVS+, in Institude of molecular & cell biology. 2016, National Tsing-Hua University.
42. Yap, Y.Q., Ex-situ preservation of Nymphaea capensis seeds and Isoetes taiwanensis corms, in Institude of molecular & cell biology. 2016, National Tsing-Hua University.
43. Subbarayan, K., et al., Influence of oxygen deficiency and the role of specific amino acids in cryopreservation of garlic shoot tips. BMC Biotechnol, 2015. 15: p. 40.
44. Ren, L., et al., Peroxidation due to cryoprotectant treatment is a vital factor for cell survival in Arabidopsis cryopreservation. Plant Sci, 2013. 212: p. 37-47.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *