|
1. Hay, F., et al., Towards the ex situ conservation of aquatic angiosperms: a review of seed storage behaviour., in Seed biology: advances and applications. Proceedings of the Sixth International Workshop on Seeds, Merida, Mexico, 1999., M. Black, K.J. Bradford, and J. Vazquez-Ramos, Editors. 2000, CABI Publishing: UK. 2. Dalziell, E.L., Seed biology and ex situ storage behaviour of Australian Nymphaea (water lilies) implications for conservation, in School of Plant Biology. 2016, the University of Western Australia. 3. Dudgeon, D., et al., Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc, 2006. 81(2): p. 163-82. 4. Geist, J., Integrative freshwater ecology and biodiversity conservation. Ecological Indicators, 2011. 11(6): p. 1507-1516. 5. Abell, R., et al., Freshwater Ecoregions of the World: A New Map of Biogeographic Units for Freshwater Biodiversity Conservation. BioScience, 2008. 58(5): p. 403. 6. Les, D.H., Nymphaeales. ENCYCLOPEDIA OF LIFE SCIENCES, 2003. 7. Songpanich, P. and V. Hongtrakul, Intersubgeneric cross in Nymphaea spp. L. to develop a blue hardy waterlily. Scientia Horticulturae, 2010. 124(4): p. 475-481. 8. Donald H. Les, et al., Phylogeny, Classification and Floral Evolution of Water Lilies (Nymphaeaceae; Nymphaeales): A Synthesis of Non-molecular, rbcL, matK, and 18S rDNA Data. Systematic Botany, 1999. Vol. 24. 9. Chanderbali, A.S., et al., Evolving Ideas on the Origin and Evolution of Flowers: New Perspectives in the Genomic Era. Genetics, 2016. 202(4): p. 1255-65. 10. Landon, K., R.A. Edwards, and P.I. Nozaic, A NEW SPECIES OF WATERLILY (NYMPHAEA MINUTA, NYMPHAEACEAE) FROM MADAGASCAR. Sida, Contributions To Botany, 2006: p. 887-893. 11. Diop, F.N. and M.M. Ali, Nymphaea micrantha, in The IUCN Red List of Threatened Species 2010. 2010. 12. Löhne, C., J.H. Wiersema, and T. Borsch, The unusualOndinea, actually just another Australian water-lily ofNymphaeasubg.Anecphya (Nymphaeaceae). Willdenowia, 2009. 39(1): p. 55-58. 13. Pammenter, N.W. and P. Berjak, Physiology of Desiccation-Sensitive (Recalcitrant) Seeds and the Implications for Cryopreservation. International Journal of Plant Sciences, 2014. 175(1): p. 21-28. 14. Walters, C., et al., Plant science. Preservation of recalcitrant seeds. Science, 2013. 339(6122): p. 915-6. 15. Engelmann, F., Plant cryopreservation: Progress and prospects. In Vitro Cellular & Developmental Biology - Plant, 2004. 40(5): p. 427-433. 16. Hu, W.H., et al., Cryopreservation the seeds of a Taiwanese terrestrial orchid, Bletilla formosana (Hayata) Schltr. by vitrification. Botanical Studies, 2013. 54(1): p. 33. 17. Kaczmarczyk, A., et al., Current Issues in Plant Cryopreservation, in Current Frontiers in Cryobiology, I. Katkov, Editor. 2012, InTech. 18. Verleysen, H., E. Van Bockstaele, and P. Debergh, An encapsulation–dehydration protocol for cryopreservation of the azalea cultivar ‘Nordlicht’ (Rhododendron simsii Planch.). Scientia Horticulturae, 2005. 106(3): p. 402-414. 19. Engelmann, F., et al., The Development of Encapsulation Dehydration, in Plant Cryopreservation: A Practical Guide., B.M. Reed, Editor. 2008. 20. Sakai, A., D. Hirai, and T. Niino, Development of PVS-Based Vitrification and Encapsulation–Vitrification Protocols, in Plant Cryopreservation: A Practical Guide, D.J. Burritt, Editor. 2008. 21. Raju, G.A.R., et al., Vitrification: An Emerging Technique for Cryopreservation in Assisted Reproduction Programmes. Embryo Talk, 2006. 1(4): p. 210-227. 22. Nishizawa, S., et al., Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Science, 1993. 23. Kulus, D. and M. Zalewska, Cryopreservation as a tool used in long-term storage of ornamental species – A review. Scientia Horticulturae, 2014. 168: p. 88-107. 24. Teixeira, A.S., et al., Glass transition and heat capacity behaviors of plant vitrification solutions. Thermochimica Acta, 2014. 593: p. 43-49. 25. Chen, G.Q., et al., Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings. Cryobiology, 2015. 70(1): p. 38-47. 26. Zhang, D., et al., ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox. Plant Cell Rep, 2015. 34(9): p. 1499-513. 27. Gill, S.S. and N. Tuteja, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010. 48(12): p. 909-30. 28. Uchendu, E.E., et al., Antioxidant and anti-stress compounds improve regrowth of cryopreserved Rubus shoot tips. In Vitro Cellular & Developmental Biology - Plant, 2010. 46(4): p. 386-393. 29. Reed, B.M., E. Uchendu, and M.N. Normah, Are antioxidants effective for reducing oxidative stress during cryopreservation. 2012. 30. Uchendu, E.E. and E.R.J. Keller, MELATONIN-LOADED ALGINATE BEADS IMPROVE CRYOPRESERVATION OF YAM (Dioscorea alata and D. cayenensis). CryoLetters 2016. 37(2): p. 77-87. 31. Uchendu, E.E., et al., Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep, 2010. 29(1): p. 25-35. 32. Chen, G.-q., et al., Glutathione improves survival of cryopreserved embryogenic calli of Agapanthus praecox subsp. orientalis. Acta Physiologiae Plantarum, 2016. 38(10). 33. Uchendu, E.E., et al., Melatonin enhances the recovery of cryopreserved shoot tips of American elm (Ulmus americana L.). Journal of Pineal Research, 2013. 55: p. 435-442. 34. Zhao, Y., et al., Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. Journal of Pineal Research, 2011. 50: p. 83-88. 35. Plitta, B.P., et al., DNA methylation of Quercus robur L. plumules following cryo-pretreatment and cryopreservation. Plant Cell, Tissue and Organ Culture (PCTOC), 2013. 117(1): p. 31-37. 36. Chakrabarty, D., K.W. Yu, and K.Y. Paek, Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Science, 2003. 165(1): p. 61-68. 37. Nuc, K., M. Marszałek, and P.M. Pukacki, Cryopreservation changes the DNA methylation of embryonic axes of Quercus robur and Fagus sylvatica seeds during in vitro culture. Trees, 2016. 30(5): p. 1831-1841. 38. Michalak, M., et al., Global changes in DNA methylation in seeds and seedlings of Pyrus communis after seed desiccation and storage. PLoS One, 2013. 8(8): p. e70693. 39. Lechat, M.M., et al., Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel. J Exp Bot, 2015. 66(11): p. 3129-40. 40. Berjak, P. and N.W. Pammenter, Implications of the lack of desiccation tolerance in recalcitrant seeds. Front Plant Sci, 2013. 4: p. 478. 41. Lee, C.-H., Cryopreservation of seeds of blue waterlily (Nymphaea caerulea) using glutathione adding plant vitrification solution, PVS+, in Institude of molecular & cell biology. 2016, National Tsing-Hua University. 42. Yap, Y.Q., Ex-situ preservation of Nymphaea capensis seeds and Isoetes taiwanensis corms, in Institude of molecular & cell biology. 2016, National Tsing-Hua University. 43. Subbarayan, K., et al., Influence of oxygen deficiency and the role of specific amino acids in cryopreservation of garlic shoot tips. BMC Biotechnol, 2015. 15: p. 40. 44. Ren, L., et al., Peroxidation due to cryoprotectant treatment is a vital factor for cell survival in Arabidopsis cryopreservation. Plant Sci, 2013. 212: p. 37-47.
|