帳號:guest(18.226.214.95)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴宛姿
作者(外文):Lai, Wan-Tzu
論文名稱(中文):新型CXC-受體拮抗劑(pT12S)之抗癌效果研究
論文名稱(外文):A novel CXCR1/2 antagonist (pT12S) as a potent anticancer drug
指導教授(中文):程家維
指導教授(外文):Cheng, Jya-Wei
口試委員(中文):陳金榜
周裕珽
口試委員(外文):Chen, Chin-Pan
Chou, Yu-Ting
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:104080543
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:62
中文關鍵詞:介白素-8CXC-受體 (CXCR1/2)拮抗劑抗癌胜肽EGFR-TKIEGFR-TKI抗藥性化療抗藥性非小細胞肺癌
外文關鍵詞:Interleukin-8 (IL-8)CXCR1/2antagonistanticancer peptideEGFR-TKIEGFR-TKI resistancechemoresistanceNSCLC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:81
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
先前的研究文獻表明,IL-8可能會對非小細胞肺癌細胞(NSCLC)賦予EGFR-TKI抗藥性,並且有部分研究也揭示了IL-8及IL-8受體(CXCR1/2)與腫瘤進展、轉移和癌症發展有關。此外,藉由藥物/逆境誘導刺激的IL-8訊號傳遞已被先前文獻證明會賦予癌細胞的化學耐藥性。
在先前的研究中,我們開發了一個高效能CXC-受體拮抗劑,為一IL-8相似物,稱之為pT12S。欲利用此CXC-受體拮抗劑(pT12S)和IL-8共同競爭IL-8受體(CXCR1/2) ,達到阻斷IL-8訊號傳遞鏈對癌症發展的影響。
我們通過RT-qPCR和ELISA檢測IL-8和IL-8受體(CXCR1/2)的表達,用以鑑定具有/不具有艾瑞莎(gefitinib)誘導的HCC827和HCC827GR細胞株之特性。我們的結果展示了pT12S可抑制細胞增殖和細胞存活於艾瑞莎處理誘導之HCC827GR細胞株上。此外,我們設計了一系列實驗,藉由侵襲測定法進一步表明IL-8受體(CXCR1/2)於HCC827GR中的關鍵作用,並測定了pT12S具有抑制細胞侵襲和遷移的能力於艾瑞莎處理誘導之HCC827GR細胞株。
我們的數據表明了pT12S可能發展為一種新型抗癌藥物,能克服晚期肺腺癌患者的EGFR-TKI抗藥性。此項研究突顯了IL-8受體(CXCR1/2)在癌症中所扮演的關鍵角色,並揭示了小分子多肽藥物pT12S作用的功能特性。
此外,pT12S可能有助於EGFR-TKI(艾瑞莎)的聯合治療,以延緩未來臨床治療上NSCLC患者TKI抗藥性的出現。

關鍵字: 介白素-8、CXC-受體 (CXCR1/2)、拮抗劑、抗癌胜肽、EGFR-TKI、EGFR-TKI抗藥性、化療抗藥性、非小細胞肺癌
Previous studies had shown that IL-8 may confer resistance to EGFR-TKI in NSCLC, and several studies had also revealed that IL-8 and IL-8R (CXCR1/2) correlate with tumor progression, metastasis and the development of cancer. Moreover, stress and drug-induced IL-8 signaling had been demonstrated that confer chemoresistance in cancer cells.
In our previous study, we developed a high-performance CXC-receptor antagonist, an IL-8 analogue, called pT12S. Use this CXC-receptor antagonist (pT12S) to compete the IL-8R (CXCR1/2) with IL-8 that blocking the IL-8 signaling pathway in cancer progression and development.
We detected the IL-8 and IL-8R expression to identify the properties of HCC827 and HCC827GR cell lines with/without gefitinib-induced by RT-qPCR and ELISA. Here we showed that pT12S can inhibit cell proliferation and cell survival in HCC827GR with gefitinib-induced stress. Additionally, we designed a serial of experiment to reveal the crucial role of IL-8R in HCC827GR by invasion assay, and examined that pT12S can inhibit cell invasion and migration abilities.
In conclusion, our data suggested that pT12S may develop as a novel anticancer drug and overcome the TKI-resistance for advanced lung cancer patients. This study highlights the crucial role of IL-8R (CXCR1/2) in cancer, and reveals the functional properties of the small-molecular polypeptide drug, pT12S. Furthermore, pT12S may contribute to combination therapy with EGFR-TKI (gefitinib) to prolong the emergence of TKI resistance for NSCLC patients in future clinical treatment.

Keywords: Interleukin-8 (IL-8), CXCR1/2, antagonist, anticancer peptide, EGFR-TKI, EGFR-TKI resistance, chemoresistance, NSCLC
摘要 I
Abstract III
Acknowledgement IV
Content V
Figure List X
Chapter 1 Introduction 1
1.1 Lung cancer 1
1.2 EGFR-TKIs & EGFR-TKI resistance 1
1.3 Alimta® (Pemetrexed disodium) 2
1.4 The ELR+-CXC chemokines and their receptors 3
1.5 The role of interleukin-8 (IL-8/CXCL8) pathway in cancer 4
1.6 Design the antagonist of ELR+-CXC receptors 5
Chapter 2 Material and Methods 7
2.1. Chemical and Reagents 7
2.2. Cell lines 7
2.3. Expression of recombinant IL-8 and G31P-IP10-T12S (pT12S) 7
2.4. Expression and purification of recombinant IL-8 and G31P-IP10-T12S (pT12S) 8
2.5. Enzyme-linked Immunosorbent assay (ELISA) 9
2.6. Real-time quantitative reverse transcription-PCR (RT-qPCR) 9
2.7. Cell cytotoxicity of gefitinib/Alimta by CCK8 10
2.8. Proliferation assay by CCK8 10
2.9. Colony formation 11
2.10. Invasion assay 11
2.11. Wound healing assay 11
2.12. Statistical analysis 12
Chapter 3 Results 13
3.1. Characterization of HCC827/GR cell lines sensitivity or resistance with gefitinib/Alimta 13
3.2. Expression levels of IL-8 and IL-8R (CXCXR1/2) with/without gefitinib-induced in HCC827GR compared with HCC827 13
3.3. pT12S can inhibit cell proliferation and cell survival in HCC827GR with gefitinib-induced stress 15
3.4. The crucial role of CXCR1 and CXCR2 in EGFR TKI-resistance cell line by invasion assay 16
3.5. pT12S effectively inhibited gefitinib-induced cell invasion in HCC827GR 16
3.6. pT12S can attenuate cell migration ability by wound-healing assay 16
Chapter 4 Discussion 18
Chapter 5 Conclusion 21
References 52
Supplementary data 56

1. Morgillo F, Della Corte CM, Fasano M, Ciardiello F. Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open. 2016;1(3):e000060.
2. Ohashi K, Maruvka YE, Michor F, Pao W. Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. J Clin Oncol. 2013; 31:1070–1080.
3. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005; 5:275–284.
4. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: Challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov. 2009; 8:806–823.
5. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013; 13(10):714–26.
6. Liu Y-N, Chang T-H, Tsai M-F, et al. IL-8 confers resistance to EGFR inhibitors by inducing stem cell properties in lung cancer. Oncotarget. 2015;6(12):10415-10431.
7. Huang L, Fu L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharmaceutica Sinica B. 2015;5(5):390-401.
8. A. Adjei; Pemetrexed: A multitargeted antifolate agent with promising activity in solid tumors. Ann Oncol 2000; 11(10): 1335-1341.
9. YANG M, FAN W-F, PU X-L, LIU F-Y, MENG L-J, WANG J. Significance of thymidylate synthase expression for resistance to pemetrexed in pulmonary adenocarcinoma. Oncology Letters. 2014;7(1):227-232.
10. Goudar RK. Review of pemetrexed in combination with cisplatin for the treatment of malignant pleural mesothelioma. Therapeutics and Clinical Risk Management. 2008;4(1):205-211.
11. Ken Takezawa, Isamu Okamoto, Junko Tanizaki, Kiyoko Kuwata, Haruka Yamaguchi, Masahiro Fukuoka, Kazuto Nishio, and Kazuhiko Nakagawa. Enhanced anticancer effect of the combination of BIBW2992 and thymidylate synthase-targeted agents in non-small cell lung cancer with the T790M mutation of epidermal growth factor receptor. Mol Cancer Ther. 2010 Jun; 9(6): 1647–1656.
12. La Monica S, Madeddu D, Tiseo M, et al. Combination of Gefitinib and Pemetrexed Prevents the Acquisition of TKI Resistance in NSCLC Cell Lines Carrying EGFR-Activating Mutation. J Thorac Oncol. 2016;11:1051-63.
13. Tianhong Li, Yi-He Ling, I. David Goldman and Roman Perez-Soler. Schedule-Dependent Cytotoxic Synergism of Pemetrexed and Erlotinib in Human Non–Small Cell Lung Cancer Cells. Clin Cancer Res. 2007 June 1; (13) (11) 3413-3422
14. Graves DT, Jiang Y. Chemokines, a family of chemotactic cytokines. Crit Rev Oral Biol Med. 1995;6:109–118.
15. Lee HJ, Song I-C, Yun H-J, Jo D-Y, Kim S. CXC chemokines and chemokine receptors in gastric cancer: From basic findings towards therapeutic targeting. World Journal of Gastroenterology : WJG. 2014;20(7):1681-1693.
16. Zlotnik A, Yoshie O. Chemokines: A new classification system and their role in immunity. Immunity. 2000.12:121–127.
17. Baggiolini M, Dewald B, Moser B. Human chemokines: an update. Annu Rev Immunol (1997) 15:675–705. 
18. Raman D, Baugher PJ, Thu YM, Richmond A. ROLE OF CHEMOKINES IN TUMOR GROWTH. Cancer letters. 2007;256(2):137-165.
19. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem. 1995;270:27348–57.
20. Singh S, Sadanandam A, Singh RK. Chemokines in tumor angiogenesis and metastasis. Cancer metastasis reviews. 2007;26(0):453-467.
21. Jaffer T, Ma D. The emerging role of chemokine receptor CXCR2 in cancer progression. Transl Cancer Res. 2016;5(Suppl 4):S616-S628. 
22. Wang Y, Qu Y, Niu XL, Sun WJ, Zhang XL, Li LZ. Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cytokine. 2011; 56:365–375.
23. Park SY, Han J, Kim JB, Yang MG, Kim YJ, Lim HJ, An SY, Kim JH. Interleukin-8 is related to poor chemotherapeutic response and tumourigenicity in hepatocellular carcinoma. Eur J Cancer. 2014; 50:341–350.
24. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004; 4:540-50.
25. Khan MN, Wang B, Wei J, et al. CXCR1/2 antagonism with CXCL8/Interleukin-8 analogue CXCL8(3-72)K11R/G31P restricts lung cancer growth by inhibiting tumor cell proliferation and suppressing angiogenesis. Oncotarget. 2015; 6:21315-27.
26. Saintigny P, Massarelli E, Lin S, et al. CXCR2 expression in tumor cells is a poor prognostic factor and promotes invasion and metastasis in lung adenocarcinoma. Cancer Res. 2013; 73:571-82.
27. Ohri CM, Shikotra A, Green RH, et al. Chemokine receptor expression in tumour islets and stroma in non-small cell lung cancer. BMC Cancer. 2010; 10:172.
28. Lee J., Horuk R., Rice G.C., Bennett G.L., Camerato T., Wood W.I. Characterization of two high affinity human interleukin-8 receptors. J. Biol. Chem. 1992; 267:16283–16287.
29. Proudfoot A.E. Chemokine receptors: Multifaceted therapeutic targets. Nat. Rev. Immunol. 2002; 2:106–115.
30. Xie K. Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev. 2001; 12:375–91
31. Tanaka T, Bai Z, Srinoulprasert Y, Yang B, Hayasaka H, Miyasaka M.
Chemokines in tumor progression and metastasis. Cancer Sci. 2005; 96:317–22.
32. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14(21):6735–41.
33. Ishita Aggarwal. Targeting the Interleukin-8 Signaling Pathway in Colorectal Cancer: A Mini-review. Journal of Young Investigators. 2013; Vol. 25 Issue 8
34. David JM, Dominguez C, Hamilton DH, Palena C. The IL-8/IL-8R Axis: A Double Agent in Tumor Immune Resistance. Whiteside TL, ed. Vaccines. 2016;4(3):22.
35. Li A., Dubey S., Varney M.L., Dave B.J., Singh R.K. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol. 2003; 170:3369–3376.
36. B Moser, B Dewald, L Barella, C Schumacher, M Baggiolini, and I Clark-Lewis. Interleukin-8 antagonists generated by N-terminal modification. J. Biol. Chem. 1993 268: 7125-.
37. I Clark-Lewis, B Dewald, M Loetscher, B Moser, and M Baggiolini. Structural requirements for interleukin-8 function identified by design of analogs and CXC chemokine hybrids. J. Biol. Chem. 1994 269: 16075-81.
38. F Li, J.R Gordon. IL-8(3–73)K11R is a high affinity agonist of the neutrophil CXCR1 and CXCR2. Biochem. Biophys. Res. Commun., 286 (2001), pp. 595–600
39.  Li F, Gordon JR. IL-8(3–73)K11R is a high affinity agonist of the neutrophil CXCR1 and CXCR2. Biochem Biophys Res Comm. 2011;286:595–600.
40. Li L, Khan MN, Li Q, Chen X, Wei J, Wang B, Cheng JW, Gordon JR, Li F. G31P, CXCR1/2 inhibitor, with cisplatin inhibits the growth of mice hepatocellular carcinoma and mitigates high-dose cisplatin-induced nephrotoxicity. Oncol Rep. 2015;33:751–7.
41. Casilli F., Bianchini A., Gloaguen I., Biordi L., Alesse E., Festuccia C., Cavalieri B., Strippoli R., Cervellera M.N., Di Bitondo R., et al. Inhibition of interleukin-8 (CXCL8/IL-8) responses by repertaxin, a new inhibitor of the chemokine receptors CXCR1 and CXCR2. Biochem. Pharmacol. 2005;69:385–394.
42. Petreaca ML, Yao M, Liu Y, DeFea K, Martins-Green M. Transactivation of Vascular Endothelial Growth Factor Receptor-2 by Interleukin-8 (IL-8/CXCL8) Is Required for IL-8/CXCL8-induced Endothelial Permeability. Ginsberg M, ed. Molecular Biology of the Cell. 2007;18(12):5014-5023.
43. WANG J, HU W, WANG K, et al. Repertaxin, an inhibitor of the chemokine receptors CXCR1 and CXCR2, inhibits malignant behavior of human gastric cancer MKN45 cells in vitro and in vivo and enhances efficacy of 5-fluorouracil. International Journal of Oncology. 2016;48(4):1341-1352.
44. Wilson C, Maxwell PJ, Longley DB, Wilson RH, Johnston PG, Waugh DJJ. Constitutive and Treatment-Induced CXCL8-Signalling Selectively Modulates the Efficacy of Anti-Metabolite Therapeutics in Metastatic Prostate Cancer. PLoS ONE. 2012;7(5):e36545.
45. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786–92.
46. Ning Y, Labonte MJ, Zhang W, Bohanes PO, Gerger A, Yang D. et al. The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models. Mol Cancer Ther. 2012;11:1353–64.
47. O’Boyle G, Fox CRJ, Walden HR, et al. Chemokine receptor CXCR3 agonist prevents human T-cell migration in a humanized model of arthritic inflammation. PNAS. 2012;109(12):4598-4603.
48. Vela M, Aris M, Llorente M, Garcia-Sanz JA, Kremer L. Chemokine Receptor-Specific Antibodies in Cancer Immunotherapy: Achievements and Challenges. Frontiers in Immunology. 2015;6:12.
49. Glynn PC, Henney E, Hall IP. The selective CXCR2 antagonist SB272844 blocks interleukin-8 and growth-related oncogene-[alpha]-mediated inhibition of spontaneous neutrophil apoptosis. Pulm. Pharmacol. Ther. 2002;15:103–111
50. Joseph PRB, Sarmiento JM, Mishra AK, et al. Probing the Role of CXC Motif in Chemokine CXCL8 for High Affinity Binding and Activation of CXCR1 and CXCR2 Receptors. The Journal of Biological Chemistry. 2010;285(38):29262-29269.
51. Tazzyman, S., Barry, S. T., Ashton, S., Wood, P., Blakey, D., Lewis, C. E. and Murdoch, C. Inhibition of neutrophil infiltration into A549 lung tumors in vitro and in vivo using a CXCR2-specific antagonist is associated with reduced tumor growth. Int. J. Cancer. 2011, 129: 847–858.
52. Hwang W, Chiu YF, Kuo MH, Lee KL, Lee AC, Yu CC, Chang JL, Huang WC, Hsiao SH, Lin SE, Chou YT. Expression of Neuroendocrine Factor VGF in Lung Cancer Cells Confers Resistance to EGFR Kinase Inhibitors and Triggers Epithelial-to-Mesenchymal Transition. Cancer Res. 2017 Jun 1;77(11):3013-3026.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *