帳號:guest(3.147.75.111)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):宋秋嫻
作者(外文):Song, Chiou-Shian
論文名稱(中文):精準調控中心體的谷氨醯化並探討其在初級纖毛結構 及微管生成所扮演的角色
論文名稱(外文):Spatiotemporally manipulation of tubulin glutamylation in centrosomes reveals its roles in cilia integrity and microtubule growth
指導教授(中文):林玉俊
指導教授(外文):Lin, Yu-Chun
口試委員(中文):鄭惠春
王慧菁
口試委員(外文):Cheng, Hui-Chun
Wang, Hui-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:104080534
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:46
中文關鍵詞:中心體谷氨醯化初級纖毛微管生成
外文關鍵詞:centrosomeglutamylationciliamicrotubule growth
相關次數:
  • 推薦推薦:0
  • 點閱點閱:56
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
中心體是一種由微管蛋白質組成的胞器,其作為微管形成中心並調控包含細胞移行、細胞分裂、基因穩定性和纖毛生成等細胞生理機制。中心體缺陷會導致腫瘤形成、神經退化疾病和纖毛缺失症。中心體的微管蛋白質會受到谷氨醯化已被發現數十年,但其所扮演的生理角色仍然未知,主要是因為缺乏可以在活細胞內的特定
時空間去調控微管蛋白後轉譯修飾的技術所致。為了克服這個長期存在的問題,我們發展了一套新的技術能將感興趣的蛋白質快速地轉移到中心體上。藉此系統,我們將一個去谷氨醯化的酵素 CCP5 快速地轉移到中心體上來去除該處的谷氨醯化。研究發現中心體去谷氨醯化後並不影響中心體的結構,但卻會抑制中心體不同的功能如破壞初級纖毛。此外,中心體去氨醯化還會減少微管形成中心的關鍵蛋白質 γ-tubulin 在中心體的含量,並減短從中心體生長出來的微管長度。我們與此研究中發展了一個調控中心體谷氨醯化的嶄新技術,並藉此首次發現中心體谷氨醯化對於中心體的多項功能如初級纖毛生長及其結構維持扮演重要角色,但卻與中心體結構無關。未來將繼續探討中心體谷氨醯化調控初級纖毛結構的分子機制。
Centrosome, a tubulin-based organelle, functions as a microtubule organizing center (MTOC) and tightly regulates the wide range of cellular activities including cell migration, cell division, genome stability, and ciliogenesis. Defects in centrosomes lead to many human diseases such as tumors, neurodegenerative diseases, ciliopathies, and so on. It is known for decades that centrosomal tubulin are subject to glutamylation. However, the physiological roles of centrosomal glutamylation are largely unknown primarily owing to a lack of techniques for spatiotemporally manipulating tubulin post-translational modifications (PTMs) in living cells. To address this long-standing issue, we developed a new technique enabling us to translocate the protein of interest (POI) onto centrosomes within minutes. Taken advantage of this, we rapidly depleted centrosomal glutamylation by inducibly recruiting an engineered deglutamylase onto centrosomes. Rapid deglutamylation in centrosomes does not affect the structural integrity of centrosome. Interestingly, centrosomal deglutamylation disturbs the ciliogenesis and cilia maintenance. Moreover, deglutamylation reduces the level of γ-tubulin, a key component of MTOC, and attenuates the growth of centrosome-derived microtubule. Our study has established a new tool for spatiotemporally perturbing glutamylation in centrosome and has uncovered that glutamylation is important for the centrosomal functions regarding to ciliogenesis, cilia maintenance and microtubule nucleation but plays little role in the centrosome integrity of centrosome. The detail mechanisms of how glutamylation regulates cilia structure will be evaluated in the near future.
口試委員審定書 ……………………………………………………….. 1
致謝 …………………………………………………….........….. 2
Abstract ………………………………………………………....... 3
中文摘要 ………………………………………………………........ 4
目錄 ………………………………………………………............ 5
List of Figures ……………………………………………………….7
Chapter 1 Introduction………………………………………… 8
1.1 Overview of centrosome……………………………… 8
1.2 Centrosomal tubulin undergoes various post-translational
modifications……………………………………………………….... 8
1.3 Glutamylation and modifying enzyme…8
1.4 Convectional approaches for studying the physiological roles of tubulin glutamylation……………………………... 9
1.5 The technical limitation hampers the understanding of centrosomal glutamylation………………………….. 10
1.6 A new tool for spatiotemporal tubulin PTMs in living cells………............................. 11
Chapter 2 Methods…………………………………………………. 13
2.1 Cell culture and transfection………… 13
2.2 Live cell-imaging………………………………………. 13
2.3 Measurement of centrosomal microtubule………….. 14
2.4 Immunofluorescence staining……………………………………….. 14
2.5 Statistical analysis…………………………………………………… 15
Chapter 3 Results………………………………………………………… 15
3.1 Centrosomal tubulin undergoes glutamylation………………………. 15
3.2 Rapidly recruiting soluble proteins onto centrosomes…………......................... 15
3.3 Translocation of the CCP5 catalytic domain onto centrosome for
locally depleting glutamylated tubulin.. 17
3.4 Glutamylation is not required for the structural integrity of
centrosomes…………………………………………………………... 18
3.5 Centrosomal deglutamylation inhibits the ciliogenesis and abolishes
the cilia maintenance…………………………………………19
3.6 Centrosomal deglutamylation attenuates the growth of cytosolic
microtubules………………………………………………………….. 20
Chapter 4 Discussion……………………………………………22
Chapter 5 References……………………………………………43
[1] Janke C, Bulinski JC. (2012) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions Nat Rev Mol Cell Biol. 12(12):773-86.
[2] Abal M, Piel M, Bouckson-Castaing V, Mogensen M, Sibarita JB,
Bornens M. (2002) Microtubule release from the centrosome in migrating cells. J Cell Biol. 159,731-737
[3] Sandrine Etienne-Manneville & Alan Hall, (2003) Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature (London) 421,753-756
[4] Schliwa M, Euteneuer U, Gräf R, Ueda M.(1999) Centrosomes,
microtubules and cell migration. Soc.Symp. 65,223-231
[5]Abal M, Keryer G, Bornens M.(2005) Centrioles resist forces applied on centrosomes during G2/M transition.Biol.Cell 97,425-434
[6] Y. Bobinnec, A. Khodjakov, L.M. Mir, C.L. Rieder, B. Eddé, and M. Bornens,(1998a) Centriole Disassembly In Vivo and Its Effect on
Centrosome Structure and Function in Vertebrate Cells.J.Cell.Biol.
143,1575-1589
[7] Bobinnec Y, Moudjou M, Fouquet JP, Desbruyères E, Eddé B, Bornens
M.(1998b) Glutamylation of centriole and cytoplasmic tubulin in
proliferating non-neuronal cells. Cell Motil Cytoskeleton 39,223-232
[8] Westermann, Stefan; Weber, Klaus, (2003) Post-translational
modifications regulate microtubule function.Nat. Rev. Mol. Cell Biol. 4,938-947
[9] Boucher D, Larcher JC, Gros F, Denoulet P. (1994) Polyglutamylation
of tubulin as a progressive regulator of in vitro interactions between the
microtubule-associated protein Tau and tubulin.Biochemistry. 33:12471- 12475
[10] Larcher JC, Boucher D, Lazereg S, Gros F, Denoulet P. (1996)
Interaction of kinesin motor domains with alpha- and beta-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation. J. Biol. Chem.271:22117-22124
[11] Badano JL, Teslovich TM, Katsanis N. (2005) The centrosome in
human genetic disease.Nature Reviews Genetics 6,194-205
[12] Rogowski K.(2010) A family of protein-deglutamylating enzymes
associated with neurodegeneration. Cell Volume143, issue 4, Pages 564- 578
[13] Dorota Wloga, Jacek Gaertig. (2010) Post-translational modifications of microtubules. J. Cell. Sci ;123(20):3447-3455
[14] Pathak N, Austin-Tse CA, Liu Y, Vasilyev A, Drummond IA.(2014) Cytoplasmic carboxypeptidase 5 regulates tubulin glutamylation and zebrafish cilia formation and function. Mol Biol Cell. 15;25(12):1836- 1844
[15] Putyrski M, Schultz C.(2012) Protein translocation as a tool: The current rapamycin story. FEBS Lett. 16;586(15):2097-105
[16] DeRose R, Miyamoto T, Inoue T. (2013) Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflugers Arch. 465(3):409-17
[17] Yu-Chun Lin, Pawel Niewiadomski, Benjamin Lin, Hideki
Nakamura, Siew Cheng Phua, John Jiao, Andre Levchenko, Takafumi
Inoue, Rajat Rohatgi, and Takanari Inoue. (2013) Chemically-inducible diffusion trap at cilia (C-IDTc) reveals molecular sieve-like barrier. Nat Chem Biol. 9(7): 437-443
[18] Zhu X, Kaverina I. (2011) Quantification of asymmetric microtubule nucleation at subcellular structures. Methods Mol. Biol. 777:235-44
[19] Pedersen LB, Rosenbaum JL.(2008) Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol. 85(08): 23-61
[20] Miyamoto T, DeRose R, Suarez A, Ueno T, Chen M, Sun TP,
Wolfgang MJ, Mukherjee C, Meyers DJ, Inoue T.(2012) Rapid and
orthogonal logic gating with a gibberellin-induced dimerization system. Nat Chem Biol 8(5): 465-470.
[21] V. Mennella, B. Keszthelyi, K.L. McDonald,1 B. Chhun,2 F. Kan, G.C. Rogers,3 B Huang,2 and D.A. Agard,(2012) Sub-diffractionresolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat Cell Biol 14(11): 1159- 1168.
[22] Zhu, X. & Kaverina, I. (2011) Quantification of asymmetric microtubule nucleation at subcellular structures. Methods Mol. Biol. 777, 235–244
[24] Taslimi, A. et al. (2014) An optimized optogenetic clustering tool for probing protein interaction and function. Nat. Commun. 5, 4925
[25] Hong, S.R., Wang, C.L., Huang, Y.S., Chang, Y.C., Chang, Y.C., Pusapati, G.V., Lin, C.Y., Hsu, N., Cheng, H.C., Chiang, Y.C., Huang, W.E., Shaner, N.C., Rohatgi, R., Inoue T., Lin, Y.C. (2018) Spatiotemporal manipulation of ciliary glutamylation reveals its roles in intraciliary trafficking and Hedgehog signaling. Nat Commun. In press
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *