帳號:guest(3.128.226.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林妮萱
作者(外文):Lin, Ni-Hsuan.
論文名稱(中文):探討Gigaxonin對於中間型蛋白絲GFAP之降解
論文名稱(外文):The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP
指導教授(中文):彭明德
指導教授(外文):Perng, Ming-Der
口試委員(中文):王翊青
林玉俊
口試委員(外文):Wang, I-Ching
Lin, Yu-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:104080531
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:68
中文關鍵詞:中間型蛋白絲亞歷山大氏症神經膠質纖維酸性蛋白質
外文關鍵詞:gigaxoninintermediate filamentAlexander diseaseGFAP
相關次數:
  • 推薦推薦:0
  • 點閱點閱:59
  • 評分評分:*****
  • 下載下載:21
  • 收藏收藏:0
亞歷山大氏症 (Alexander disease, AxD) 是一罕見中樞神經退化性疾病,其致病原因為主要表現於星狀細胞 (astrocyte) 內的中間型蛋白絲 (intermediate filament, IF)-神經膠質纖維酸性蛋白質 (glial- specific intermediate filament protein, GFAP) 基因發生突變,導致其在結構與功能上發生異常,並且在星狀細胞中產生大量且不正常聚集,進而形成羅森塔爾纖維 (Rosenthal fibers)。研究發現,此不正常聚集纖維也能在罕見疾病-巨軸突神經病變 (giant axon neuropathy, GAN)患者中看到,而引起此疾病的主因為 gigaxonin 基因產生突變,由患者的病理學上可以看到大量神經絲 (neurofilament, NF) 聚集於軸突當中,又經由結構預測 gigaxonin 為一E3泛素接合酶 (E3 ligase adaptor),而E3泛素接合酶也參與了蛋白質降解之重要路徑-泛素-蛋白酶體系統 (Ubiquitin-proteasome system, UPS),所以基於 gigaxonin 之潛在功能,前人研究 gigaxonin 功能正常是否能將大量且不正常聚集之神經絲降解,結果顯示 gigaxonin 確實會藉由泛素-蛋白酶體系統將神經絲表現量下降之外,也會降解其他中間型蛋白絲-波形蛋白 (vimentin)、外周蛋白 (peripherin);目前 gigaxonin 對於降解同樣屬於中間型蛋白絲之 GFAP 仍未知,因此,本研究利用慢性病毒轉導技術將正常 gigaxonin 大量表現於初代星狀細胞 (primary astrocyte) 以及將未具有內生性中間型蛋白絲之 SW13 細胞株表現與亞歷山大氏症相關之 GFAP突變,利用免疫染色法 (immunofluorescence microscopy) 和免疫轉漬法 (immunoblotting) 分析 gigaxonin 是否會降解 GFAP 表現量,本研究結果發現,gigaxonin 會降解正常 GFAP,但是卻只能降低部分之突變 GFAP 表現量;研究結果顯示 gigaxonin 對於亞歷山大氏症及因異常中間型蛋白絲所導致的相關疾病,在未來可能提供一個新的治療契機。
Abnormal aggregates resulting from mutations in the intermediate filament (IF) proteins are pathological hallmarks of a wide range of neurodegenerative diseases. This is exemplified by Alexander disease (AxD), a primary genetic disorder of astrocytes caused by dominant mutations in the gene encoding the glial filament protein GFAP. This disease is characterized by excessive accumulation of GFAP in an aggregated form known as Rosenthal fibers within astrocyte cell bodies and processes. Abnormal GFAP aggregation also occurs in other pathological conditions, such as giant axon neuropathy (GAN). GAN is caused by recessive mutations in the gene encoding gigaxonin, which is predicted to be an E3 ligase adaptor. Although GAN represents the only disease that causes a generalized disorganization of IFs in a range of cell types, the molecular mechanisms by which mutations in gigaxonin affect the IF cytoskeletal system are unknown. Recent studies have demonstrated that the main function of gigaxonin is to target IF proteins for degradation through the proteasomal pathway. We therefore sought to determine whether gigaxonin is involved in degradation of GFAP. Using a lentiviral transduction system, we demonstrated that gigaxonin levels influence the degradation of GFAP IFs in primary rat astrocytes and in SW13 cell lines stably expressing this IF protein. Gigaxonin was similarly involved in the degradation of some but not all AxD-associated GFAP mutants. Gigaxonin directly binds to GFAP, and proteasomal inhibition by MG-132 reversed the clearance of GFAP in cells achieved by overexpressing gigaxonin. Together, these findings identified gigaxonin as an important factor that targets the glial-specific IF protein GFAP for degradation through the proteasome pathway. Our studies provide a critical foundation for future studies with a goal towards reducing or reversing pathological accumulation of GFAP as a potential therapeutic strategy for AxD and other related diseases characterized by IF aggregation.
Abstract-1
摘要-2
Chapter 1 : Introduction-5
1.1 Intermediate filaments and GFAP-5
Table 1.1-1. Intermediate filaments: expression pattern and involvement in human diseases.-6
Figure 1.1-1. A schematic view of GFAP structural organization and localization of disease-causing mutations.-8
Figure 1.1-2. A hypothetical model of GFAP assembly pathway.-10
1.2 Functions of GFAP-11
Figure 1.2-1. Schematic representation of gigaxonin.-14
Figure 1.2-2. A model of gigaxonin-mediated protein degradation through ubiquitin proteasome system (UPS).-15
1.3 Outline of the study-16
Chapter 2 : Materials and methods-17
2.1 Plasmid construction and site-directed mutagenesis.-17
2.2 Cell culture-17
Figure 2.2-1. Establishment of stable cell lines.-18
Figure 2.2-2. Representative images of SW13 stable lines expressing either wild type or mutant GFAPs.-19
2.3 Primary cortical astrocyte cultures-20
2.4 Lentiviral production and transduction-20
Figure 2.4-1. Expression vectors used for production of lentiviruses. 21
Figure 2.4-2. Quantification of the concentration of lentivirus.-23
Figure 2.4-3. Visualization of lentivirus by transmission electron microscopy.-24
Table 2.4-1. Summary of conditions for lentiviral transduction.-25
2.5 Immunofluorescence microscopy-26
Table 2.5-1. Summary of antibodies used for immunoblotting, immunostaining and immunoprecipitation.-27
2.6 Cell fractionation-28
2.7 Immunoprecipitation-28
2.8 Immunoblotting-28
Chapter 3 : Results-30
3.1 Gigaxonin overexpression specifically cleared GFAP IFs in primary astrocytes-30
Figure 3.1-1. Gigaxonin cleared GFAP IFs in primary rat astrocyte.-31
Figure 3.1-2. Expression of gigaxonin did not affect organization of actin-containing microfilaments and microtubules in primary astrocytes.-33
Figure 3.1-3. Clearance of GFAP IFs by gigaxonin did not affect other cytoskeletal structures.-34
3.2 Ubiquitin proteasomal pathway involves in gigaxonin-mediated clearance of GFAP-35
Figure 3.2-1. Interaction of GFAP with gigaxonin determined by co-immunoprecipitation.-36
3.3 Proteasome is involved in the clearance of GFAP-37
Figure 3.3-1. GFAP was cleared by gigaxonin through ubiquitin proteasome system.-38
3.4 Gigaxonin degraded human wild type GFAP IFs.-39
Figure 3.4-1. Gigaxonin cleared human wild type GFAP IFs in SW13 cells.-40
Figure 3.4-2. Microtubules (MTs) appeared normal in gigaxonin-transfected cells.-41
3.5 Gigaxonin cleared some but not all GFAP mutants.-42
Figure 3.5-1. A disease-causing GFAP mutant was similarly cleared by gigaxonin. SW13 cells stably expressing R416W GFAP were infected with Flag-GAN lentiviruses.-43
Figure 3.5-2. Gigaxonin cleared a disease-linked form of GFAP mutant.-44
Figure 3.5-3. Gigaxonin cleared a mutant form of GFAP. SW13 cells stably expressing R88C GFAP were infected with lentiviruses containing Flag-gigaxonin for 72 hours.-46
Figure 3.5-4. Gigaxonin cleared some but R239H GFAP mutants.-47
Figure 3.5-5. Gigaxonin was unable to clear Δ4 GFAP mutant.-48
3.6 Disease-linked mutations in GFAP reduced its interaction with gigaxonin-49
Figure 3.6-1. Disease-causing mutations in GFAP reduces its interaction with gigaxonin.-51
Chapter 4 : Discussion-52
4.1 How gigaxonin exerts its effect on GFAP-52
Figure 4.1-1. A schematic diagram shows that gigaxonin functions as an E3 ubiquitin ligase adaptor that facilitates proteasomal degradation of GFAP.-54
4.2 Why gigaxonin degrades some but not all GFAP mutants-55
4.3 Therapeutic implication for AxD and related disorders-57
References-60
Appendix-68
Asbury, A.K., M.K. Gale, S.C. Cox, J.R. Baringer, and B.O. Berg. 1972. Giant axonal neuropathy--a unique case with segmental neurofilamentous masses. Acta Neuropathol. 20:237-47.
Bachetti, T., E. Di Zanni, P. Balbi, P. Bocca, I. Prigione, G.A. Deiana, A. Rezzani, I. Ceccherini, and G. Sechi. 2010. In vitro treatments with ceftriaxone promote elimination of mutant glial fibrillary acidic protein and transcription down-regulation. Exp Cell Res. 316:2152-65.
Bachetti, T., E. Di Zanni, P. Balbi, R. Ravazzolo, G. Sechi, and I. Ceccherini. 2012. Beneficial effects of curcumin on GFAP filament organization and down-regulation of GFAP expression in an in vitro model of Alexander disease. Exp Cell Res. 318:1844-54.
Balcarek, J.M., and N.J. Cowan. 1985. Structure of the mouse glial fibrillary acidic protein gene: implications for the evolution of the intermediate filament multigene family. Nucleic Acids Res. 13:5527-43.
Berg, B.O., S.H. Rosenberg, and A.K. Asbury. 1972. Giant axonal neuropathy. Pediatrics. 49:894-9.
Blechingberg, J., I.E. Holm, K.B. Nielsen, T.H. Jensen, A.L. Jorgensen, and A.L. Nielsen. 2007. Identification and characterization of GFAPkappa, a novel glial fibrillary acidic protein isoform. Glia. 55:497-507.
Bomont, P., L. Cavalier, F. Blondeau, C. Ben Hamida, S. Belal, M. Tazir, E. Demir, H. Topaloglu, R. Korinthenberg, B. Tuysuz, P. Landrieu, F. Hentati, and M. Koenig. 2000. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet. 26:370-4.
Brenner, M. 1994. Structure and transcriptional regulation of the GFAP gene. Brain Pathol. 4:245-57.
Brenner, M., J.E. Goldman, R.A. Quinlan, and A. Messing. 2008. Alexander disease: a genetic disorder of astrocytes. In Astrocytes in pathophysiology of the nervous system. V.H. Parpura and P.G. Haydon, editors. Springer, Boston, Massachusetts, USA.
Brenner, M., A.B. Johnson, O. Boespflug-Tanguy, D. Rodriguez, J.E. Goldman, and A. Messing. 2001. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet. 27:117-20.
Chen, M.H., T.L. Hagemann, R.A. Quinlan, A. Messing, and M.D. Perng. 2013. Caspase cleavage of GFAP produces an assembly-compromised proteolytic fragment that promotes filament aggregation. ASN Neuro.
Chen, Y.S., S.C. Lim, M.H. Chen, R.A. Quinlan, and M.D. Perng. 2011. Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Exp Cell Res. 317:2252-66.
Chiu, F.C., and J.E. Goldman. 1984. Synthesis and turnover of cytoskeletal proteins in cultured astrocytes. J Neurochem. 42:166-74.
Cho, W., M. Brenner, N. Peters, and A. Messing. 2010. Drug screening to identify suppressors of GFAP expression. Hum Mol Genet. 19:3169-78.
Cho, W., and A. Messing. 2009. Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice. Exp Cell Res. 315:1260-72.
Cleveland, D.W., K. Yamanaka, and P. Bomont. 2009. Gigaxonin controls vimentin organization through a tubulin chaperone-independent pathway. Hum Mol Genet. 18:1384-94.
Condorelli, D.F., V.G. Nicoletti, V. Barresi, A. Caruso, S. Conticello, J. de Vellis, and A.M. Giuffrida Stella. 1994. Tissue-specific DNA methylation patterns of the rat glial fibrillary acidic protein gene. J Neurosci Res. 39:694-707.
Condorelli, D.F., V.G. Nicoletti, P. Dell'Albani, V. Barresi, A. Caruso, S.G. Conticello, N. Belluardo, and A.M. Giuffrida Stella. 1999. GFAPbeta mRNA expression in the normal rat brain and after neuronal injury. Neurochem Res. 24:709-14.
de Pablo, Y., M. Nilsson, M. Pekna, and M. Pekny. 2013. Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen-glucose deprivation and reperfusion. Histochem Cell Biol. 140:81-91.
DeArmond, S.J., Y.L. Lee, H.A. Kretzschmar, and L.F. Eng. 1986. Turnover of glial filaments in mouse spinal cord. J Neurochem. 47:1749-53.
DePianto, D., and P.A. Coulombe. 2004. Intermediate filaments and tissue repair. Exp Cell Res. 301:68-76.
Dequen, F., P. Bomont, G. Gowing, D.W. Cleveland, and J.P. Julien. 2008. Modest loss of peripheral axons, muscle atrophy and formation of brain inclusions in mice with targeted deletion of gigaxonin exon 1. J Neurochem. 107:253-64.
Ding, M., C. Eliasson, C. Betsholtz, A. Hamberger, and M. Pekny. 1998. Altered taurine release following hypotonic stress in astrocytes from mice deficient for GFAP and vimentin. Brain Res Mol Brain Res. 62:77-81.
Eng, L.F., Y.L. Lee, H. Kwan, M. Brenner, and A. Messing. 1998. Astrocytes cultured from transgenic mice carrying the added human glial fibrillary acidic protein gene contain Rosenthal fibers. J Neurosci Res. 53:353-60.
Eriksson, J.E., T. Dechat, B. Grin, B. Helfand, M. Mendez, H.M. Pallari, and R.D. Goldman. 2009. Introducing intermediate filaments: from discovery to disease. J Clin Invest. 119:1763-71.
Feinstein, D.L., G.A. Weinmaster, and R.J. Milner. 1992. Isolation of cDNA clones encoding rat glial fibrillary acidic protein: expression in astrocytes and in Schwann cells. J Neurosci Res. 32:1-14.
Flint, D., R. Li, L.S. Webster, S. Naidu, E. Kolodny, A. Percy, M. van der Knaap, J.M. Powers, J.F. Mantovani, J. Ekstein, J.E. Goldman, A. Messing, and M. Brenner. 2012. Splice site, frameshift, and chimeric GFAP mutations in Alexander disease. Hum Mutat. 33:1141-8.
Furukawa, M., Y.J. He, C. Borchers, and Y. Xiong. 2003. Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol. 5:1001-7.
Ganay, T., A. Boizot, R. Burrer, J.P. Chauvin, and P. Bomont. 2011. Sensory-motor deficits and neurofilament disorganization in gigaxonin-null mice. Mol Neurodegener. 6:25.
Giwa, S., J.K. Lewis, L. Alvarez, R. Langer, A.E. Roth, G.M. Church, J.F. Markmann, D.H. Sachs, A. Chandraker, J.A. Wertheim, M. Rothblatt, E.S. Boyden, E. Eidbo, W.P.A. Lee, B. Pomahac, G. Brandacher, D.M. Weinstock, G. Elliott, D. Nelson, J.P. Acker, K. Uygun, B. Schmalz, B.P. Weegman, A. Tocchio, G.M. Fahy, K.B. Storey, B. Rubinsky, J. Bischof, J.A.W. Elliott, T.K. Woodruff, G.J. Morris, U. Demirci, K.G.M. Brockbank, E.J. Woods, R.N. Ben, J.G. Baust, D. Gao, B. Fuller, Y. Rabin, D.C. Kravitz, M.J. Taylor, and M. Toner. 2017. The promise of organ and tissue preservation to transform medicine. Nat Biotechnol. 35:530-542.
Glickman, M.H., and A. Ciechanover. 2002. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 82:373-428.
Goldman, J.E., and E. Corbin. 1988. Isolation of a major protein component of Rosenthal fibers. Am J Pathol. 130:569-78.
Gomi, H., T. Yokoyama, K. Fujimoto, T. Ikeda, A. Katoh, T. Itoh, and S. Itohara. 1995. Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron. 14:29-41.
Guingab-Cagmat, J.D., K. Newsom, A. Vakulenko, E.B. Cagmat, F.H. Kobeissy, S. Zoltewicz, K.K. Wang, and J. Anagli. 2012. In vitro MS-based proteomic analysis and absolute quantification of neuronal-glial injury biomarkers in cell culture system. Electrophoresis. 33:3786-97.
Hagemann, T.L., W.C. Boelens, E.F. Wawrousek, and A. Messing. 2009. Suppression of GFAP toxicity by alphaB-crystallin in mouse models of Alexander disease. Hum Mol Genet. 18:1190-9.
Hagemann, T.L., J.X. Connor, and A. Messing. 2006. Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response. J Neurosci. 26:11162-73.
Hagemann, T.L., R. Paylor, and A. Messing. 2013. Deficits in adult neurogenesis, contextual fear conditioning, and spatial learning in a Gfap mutant mouse model of Alexander disease. J Neurosci. 33:18698-706.
Heaven, M.R., D. Flint, S.M. Randall, A.A. Sosunov, L. Wilson, S. Barnes, J.E. Goldman, D.C. Muddiman, and M. Brenner. 2016. Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res. 15:2265-82.
Hedberg, K.K., and L.B. Chen. 1986. Absence of intermediate filaments in a human adrenal cortex carcinoma-derived cell line. Exp Cell Res. 163:509-17.
Herrmann, H., and U. Aebi. 2004. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem. 73:749-89.
Herrmann, H., H. Bar, L. Kreplak, S.V. Strelkov, and U. Aebi. 2007. Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol. 8:562-73.
Hol, E.M., and M. Pekny. 2015. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 32:121-30.
Hol, E.M., R.F. Roelofs, E. Moraal, M.A. Sonnemans, J.A. Sluijs, E.A. Proper, P.N. de Graan, D.F. Fischer, and F.W. van Leeuwen. 2003. Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms. Mol Psychiatry. 8:786-96.
Hsiao, V.C., R. Tian, H. Long, M. Der Perng, M. Brenner, R.A. Quinlan, and J.E. Goldman. 2005. Alexander-disease mutation of GFAP causes filament disorganization and decreased solubility of GFAP. J Cell Sci. 118:2057-65.
Igisu, H., M. Ohta, T. Tabira, S. Hosokawa, and I. Goto. 1975. Giant axonal neuropathy. A clinical entity affecting the central as well as the peripheral nervous system. Neurology. 25:717-21.
Israeli, E., D.I. Dryanovski, P.T. Schumacker, N.S. Chandel, J.D. Singer, J.P. Julien, R.D. Goldman, and P. Opal. 2016. Intermediate filament aggregates cause mitochondrial dysmotility and increase energy demands in giant axonal neuropathy. Hum Mol Genet.
Iwaki, T., A. Iwaki, and J.E. Goldman. 1993. Alpha B-crystallin in oxidative muscle fibers and its accumulation in ragged-red fibers: a comparative immunohistochemical and histochemical study in human skeletal muscle. Acta Neuropathol. 85:475-80.
Iwaki, T., A. Kume-Iwaki, R.K. Liem, and J.E. Goldman. 1989. Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell. 57:71-8.
Jones, J.C., C.Y. Kam, R.M. Harmon, A.V. Woychek, S.B. Hopkinson, and K.J. Green. 2017. Intermediate Filaments and the Plasma Membrane. Cold Spring Harb Perspect Biol. 9.
Kinouchi, R., M. Takeda, L. Yang, U. Wilhelmsson, A. Lundkvist, M. Pekny, and D.F. Chen. 2003. Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin. Nat Neurosci. 6:863-8.
Kraft, A.W., X. Hu, H. Yoon, P. Yan, Q. Xiao, Y. Wang, S.C. Gil, J. Brown, U. Wilhelmsson, J.L. Restivo, J.R. Cirrito, D.M. Holtzman, J. Kim, M. Pekny, and J.M. Lee. 2013. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J. 27:187-98.
Kretzschmar, H.A., B.O. Berg, and R.L. Davis. 1987. Giant axonal neuropathy. A neuropathological study. Acta Neuropathol. 73:138-44.
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680-5.
LaPash Daniels, C.M., E.V. Austin, D.E. Rockney, E.M. Jacka, T.L. Hagemann, D.A. Johnson, J.A. Johnson, and A. Messing. 2012. Beneficial effects of Nrf2 overexpression in a mouse model of Alexander disease. J Neurosci. 32:10507-15.
LaPash Daniels, C.M., E. Paffenroth, E.V. Austin, K. Glebov, D. Lewis, J. Walter, and A. Messing. 2015. Lithium Decreases Glial Fibrillary Acidic Protein in a Mouse Model of Alexander Disease. PLoS One. 10:e0138132.
Lepekhin, E.A., C. Eliasson, C.H. Berthold, V. Berezin, E. Bock, and M. Pekny. 2001. Intermediate filaments regulate astrocyte motility. J Neurochem. 79:617-25.
Leroy, K., C. Duyckaerts, L. Bovekamp, O. Muller, B.H. Anderton, and J.P. Brion. 2001. Increase of adenomatous polyposis coli immunoreactivity is a marker of reactive astrocytes in Alzheimer's disease and in other pathological conditions. Acta Neuropathol. 102:1-10.
Lewis, S.A., J.M. Balcarek, V. Krek, M. Shelanski, and N.J. Cowan. 1984. Sequence of a cDNA clone encoding mouse glial fibrillary acidic protein: structural conservation of intermediate filaments. Proc Natl Acad Sci U S A. 81:2743-6.
Li, L., A. Lundkvist, D. Andersson, U. Wilhelmsson, N. Nagai, A.C. Pardo, C. Nodin, A. Stahlberg, K. Aprico, K. Larsson, T. Yabe, L. Moons, A. Fotheringham, I. Davies, P. Carmeliet, J.P. Schwartz, M. Pekna, M. Kubista, F. Blomstrand, N. Maragakis, M. Nilsson, and M. Pekny. 2008. Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab. 28:468-81.
Li, R., A.B. Johnson, G. Salomons, J.E. Goldman, S. Naidu, R. Quinlan, B. Cree, S.Z. Ruyle, B. Banwell, M. D'Hooghe, J.R. Siebert, C.M. Rolf, H. Cox, A. Reddy, L.G. Gutierrez-Solana, A. Collins, R.O. Weller, A. Messing, M.S. van der Knaap, and M. Brenner. 2005. Glial fibrillary acidic protein mutations in infantile, juvenile, and adult forms of Alexander disease. Ann Neurol. 57:310-26.
Liedtke, W., W. Edelmann, P.L. Bieri, F.C. Chiu, N.J. Cowan, R. Kucherlapati, and C.S. Raine. 1996. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron. 17:607-15.
Lin, N.H., Y.S. Huang, P. Opal, R.D. Goldman, A. Messing, and M.D. Perng. 2016. The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP. Mol Biol Cell. 27:3980-3990.
Lowery, J., N. Jain, E.R. Kuczmarski, S. Mahammad, A. Goldman, V.I. Gelfand, P. Opal, and R.D. Goldman. 2016. Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts. Mol Biol Cell. 27:608-16.
Lu, Y.B., I. Iandiev, M. Hollborn, N. Korber, E. Ulbricht, P.G. Hirrlinger, T. Pannicke, E.Q. Wei, A. Bringmann, H. Wolburg, U. Wilhelmsson, M. Pekny, P. Wiedemann, A. Reichenbach, and J.A. Kas. 2011. Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. FASEB J. 25:624-31.
Mahammad, S., S.N. Murthy, A. Didonna, B. Grin, E. Israeli, R. Perrot, P. Bomont, J.P. Julien, E. Kuczmarski, P. Opal, and R.D. Goldman. 2013. Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J Clin Invest. 123:1964-75.
Marceau, N., B. Schutte, S. Gilbert, A. Loranger, M.E. Henfling, J.L. Broers, J. Mathew, and F.C. Ramaekers. 2007. Dual roles of intermediate filaments in apoptosis. Exp Cell Res. 313:2265-81.
Margiotta, A., and C. Bucci. 2016. Role of Intermediate Filaments in Vesicular Traffic. Cells. 5.
McCall, M.A., R.G. Gregg, R.R. Behringer, M. Brenner, C.L. Delaney, E.J. Galbreath, C.L. Zhang, R.A. Pearce, S.Y. Chiu, and A. Messing. 1996. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A. 93:6361-6.
Messing, A., M.W. Head, K. Galles, E.J. Galbreath, J.E. Goldman, and M. Brenner. 1998. Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am J Pathol. 152:391-8.
Messing, A., C.M. LaPash Daniels, and T.L. Hagemann. 2010. Strategies for treatment in Alexander disease. Neurotherapeutics. 7:507-15.
Messing, A., R. Li, S. Naidu, J.P. Taylor, L. Silverman, D. Flint, M.S. van der Knaap, and M. Brenner. 2012. Archetypal and new families with Alexander disease and novel mutations in GFAP. Arch Neurol. 69:208-14.
Middeldorp, J., and E.M. Hol. 2011. GFAP in health and disease. Prog Neurobiol. 93:421-43.
Mignot, C., C. Delarasse, S. Escaich, B. Della Gaspera, E. Noe, E. Colucci-Guyon, C. Babinet, M. Pekny, P. Vicart, O. Boespflug-Tanguy, A. Dautigny, D. Rodriguez, and D. Pham-Dinh. 2007. Dynamics of mutated GFAP aggregates revealed by real-time imaging of an astrocyte model of Alexander disease. Exp Cell Res. 313:2766-79.
Moody, L.R., G.A. Barrett-Wilt, M.R. Sussman, and A. Messing. 2017. Glial Fibrillary Acidic Protein Exhibits Altered Turnover Kinetics in a Mouse Model of Alexander Disease. J Biol Chem.
Morrison, R.S., J. De Vellis, Y.L. Lee, R.A. Bradshaw, and L.F. Eng. 1985. Hormones and growth factors induce the synthesis of glial fibrillary acidic protein in rat brain astrocytes. J Neurosci Res. 14:167-76.
Mouser, P.E., E. Head, K.H. Ha, and T.T. Rohn. 2006. Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer's disease brain. Am J Pathol. 168:936-46.
Mussche, S., B. Devreese, S. Nagabhushan Kalburgi, L. Bachaboina, J.C. Fox, H.J. Shih, R. Van Coster, R.J. Samulski, and S.J. Gray. 2013. Restoration of cytoskeleton homeostasis after gigaxonin gene transfer for giant axonal neuropathy. Hum Gene Ther. 24:209-19.
Nakazawa, T., M. Takeda, G.P. Lewis, K.S. Cho, J. Jiao, U. Wilhelmsson, S.K. Fisher, M. Pekny, D.F. Chen, and J.W. Miller. 2007. Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Invest Ophthalmol Vis Sci. 48:2760-8.
Nielsen, A.L., I.E. Holm, M. Johansen, B. Bonven, P. Jorgensen, and A.L. Jorgensen. 2002. A new splice variant of glial fibrillary acidic protein, GFAP epsilon, interacts with the presenilin proteins. J Biol Chem. 277:29983-91.
Omary, M.B., P.A. Coulombe, and W.H. McLean. 2004. Intermediate filament proteins and their associated diseases. N Engl J Med. 351:2087-100.
Omary, M.B., N.O. Ku, G.Z. Tao, D.M. Toivola, and J. Liao. 2006. "Heads and tails" of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem Sci. 31:383-94.
Pekny, M., P. Leveen, M. Pekna, C. Eliasson, C.H. Berthold, B. Westermark, and C. Betsholtz. 1995. Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J. 14:1590-8.
Pekny, M., and M. Pekna. 2014. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 94:1077-98.
Pekny, M., and M. Pekna. 2016. Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta. 1862:483-91.
Pekny, M., K.A. Stanness, C. Eliasson, C. Betsholtz, and D. Janigro. 1998. Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAP-deficient mice. Glia. 22:390-400.
Pekny, T., M. Faiz, U. Wilhelmsson, M.A. Curtis, R. Matej, O. Skalli, and M. Pekny. 2014. Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease. APMIS. 122:76-80.
Perez-Torrado, R., D. Yamada, and P.A. Defossez. 2006. Born to bind: the BTB protein-protein interaction domain. Bioessays. 28:1194-202.
Perng, M., M. Su, S.F. Wen, R. Li, T. Gibbon, A.R. Prescott, M. Brenner, and R.A. Quinlan. 2006. The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27. Am J Hum Genet. 79:197-213.
Potokar, M., M. Kreft, L. Li, J. Daniel Andersson, T. Pangrsic, H.H. Chowdhury, M. Pekny, and R. Zorec. 2007. Cytoskeleton and vesicle mobility in astrocytes. Traffic. 8:12-20.
Price, J.C., S. Guan, A. Burlingame, S.B. Prusiner, and S. Ghaemmaghami. 2010. Analysis of proteome dynamics in the mouse brain. Proc Natl Acad Sci U S A. 107:14508-13.
Prust, M., J. Wang, H. Morizono, A. Messing, M. Brenner, E. Gordon, T. Hartka, A. Sokohl, R. Schiffmann, H. Gordish-Dressman, R. Albin, H. Amartino, K. Brockman, A. Dinopoulos, M.T. Dotti, D. Fain, R. Fernandez, J. Ferreira, J. Fleming, D. Gill, M. Griebel, H. Heilstedt, P. Kaplan, D. Lewis, M. Nakagawa, R. Pedersen, A. Reddy, Y. Sawaishi, M. Schneider, E. Sherr, Y. Takiyama, K. Wakabayashi, J.R. Gorospe, and A. Vanderver. 2011. GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology. 77:1287-94.
Ralton, J.E., X. Lu, A.M. Hutcheson, and R.A. Quinlan. 1994. Identification of two N-terminal non-alpha-helical domain motifs important in the assembly of glial fibrillary acidic protein. J Cell Sci. 107 ( Pt 7):1935-48.
Roelofs, R.F., D.F. Fischer, S.H. Houtman, J.A. Sluijs, W. Van Haren, F.W. Van Leeuwen, and E.M. Hol. 2005. Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia. 52:289-300.
Rolland, B., G. Le Prince, C. Fages, J. Nunez, and M. Tardy. 1990. GFAP turnover during astroglial proliferation and differentiation. Brain Res Dev Brain Res. 56:144-9.
Sala, A.J., L.C. Bott, and R.I. Morimoto. 2017. Shaping proteostasis at the cellular, tissue, and organismal level. J Cell Biol. 216:1231-1241.
Sandilands, A., A.R. Prescott, J.M. Carter, A.M. Hutcheson, R.A. Quinlan, J. Richards, and P.G. FitzGerald. 1995. Vimentin and CP49/filensin form distinct networks in the lens which are independently modulated during lens fibre cell differentiation. J Cell Sci. 108 ( Pt 4):1397-1406.
Sawada, K., K. Agata, A. Yoshiki, and G. Eguchi. 1993. A set of anti-crystallin monoclonal antibodies for detecting lens specificities: beta-crystallin as a specific marker for detecting lentoidogenesis in cultures of chicken lens epithelial cells. Jpn J Ophthalmol. 37:355-368.
Sihag, R.K., M. Inagaki, T. Yamaguchi, T.B. Shea, and H.C. Pant. 2007. Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res. 313:2098-109.
Song, S., M.J. Hanson, B.F. Liu, L.T. Chylack, and J.J. Liang. 2008. Protein-protein interactions between lens vimentin and alphaB-crystallin using FRET acceptor photobleaching. Mol Vis. 14:1282-7.
Sullivan, S.M., A. Lee, S.T. Bjorkman, S.M. Miller, R.K. Sullivan, P. Poronnik, P.B. Colditz, and D.V. Pow. 2007. Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: an identified role for GFAP. J Biol Chem. 282:29414-23.
Takemura, M., H. Gomi, E. Colucci-Guyon, and S. Itohara. 2002a. Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice. J Neurosci. 22:6972-9.
Takemura, M., H. Nishiyama, and S. Itohara. 2002b. Distribution of phosphorylated glial fibrillary acidic protein in the mouse central nervous system. Genes Cells. 7:295-307.
Tanaka, K.F., H. Takebayashi, Y. Yamazaki, K. Ono, M. Naruse, T. Iwasato, S. Itohara, H. Kato, and K. Ikenaka. 2007. Murine model of Alexander disease: analysis of GFAP aggregate formation and its pathological significance. Glia. 55:617-31.
Tang, G., M.D. Perng, S. Wilk, R. Quinlan, and J.E. Goldman. 2010. Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition. J Biol Chem. 285:10527-37.
Tang, G., Z. Xu, and J.E. Goldman. 2006. Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease. J Biol Chem. 281:38634-43.
Tang, G., Z. Yue, Z. Talloczy, and J.E. Goldman. 2008a. Adaptive autophagy in Alexander disease-affected astrocytes. Autophagy. 4:701-3.
Tang, G., Z. Yue, Z. Talloczy, T. Hagemann, W. Cho, A. Messing, D.L. Sulzer, and J.E. Goldman. 2008b. Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways. Hum Mol Genet. 17:1540-55.
Thomas, C., S. Love, H.C. Powell, P. Schultz, and P.W. Lampert. 1987. Giant axonal neuropathy: correlation of clinical findings with postmortem neuropathology. Ann Neurol. 22:79-84.
Tian, R., M. Gregor, G. Wiche, and J.E. Goldman. 2006. Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease. Am J Pathol. 168:888-97.
Wang, L., K.J. Colodner, and M.B. Feany. 2011. Protein misfolding and oxidative stress promote glial-mediated neurodegeneration in an alexander disease model. J Neurosci. 31:2868-77.
Wilhelmsson, U., L. Li, M. Pekna, C.H. Berthold, S. Blom, C. Eliasson, O. Renner, E. Bushong, M. Ellisman, T.E. Morgan, and M. Pekny. 2004. Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci. 24:5016-21.
Xu, L., Y. Wei, J. Reboul, P. Vaglio, T.H. Shin, M. Vidal, S.J. Elledge, and J.W. Harper. 2003. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature. 425:316-21.
Zelenika, D., B. Grima, M. Brenner, and B. Pessac. 1995. A novel glial fibrillary acidic protein mRNA lacking exon 1. Brain Res Mol Brain Res. 30:251-8.
Zoltewicz, J.S., D. Scharf, B. Yang, A. Chawla, K.J. Newsom, and L. Fang. 2012. Characterization of Antibodies that Detect Human GFAP after Traumatic Brain Injury. Biomark Insights. 7:71-9.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *