帳號:guest(3.137.190.77)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡嘉瑩
作者(外文):Chien, Jia-Ying
論文名稱(中文):利用果蠅生物探討精神分裂相關基因neurexin-1對於神經元間的連接機制
論文名稱(外文):Using Drosophila as a model organism to investigate the role of schizophrenia-associated gene neurexin-1 in the neuronal connectomic plasticity
指導教授(中文):張慧雲
指導教授(外文):CHANG, HUI-YUN
口試委員(中文):桑自剛
羅中泉
口試委員(外文):SANG, TZU-KANG
LO, CHUNG-CHUAN
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:104080525
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:54
中文關鍵詞:精神分裂症思覺失調症突觸囊泡突觸可塑性Neurexin-1
外文關鍵詞:SchizophreniaNeurexin-1Synaptic vesicleSynaptic plasticity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:33
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
精神分裂症,又稱思覺失調症(Schizophrenia),為一種精神疾病,患者的臨床症狀有幻聽、幻視、異常的社會行為和認知障礙,發病年齡通常為青春期到成年期間。造成思覺失調症的原因包含環境因素和遺傳因素,在過去研究顯示,藥物的濫用、營養失衡和生活環境的巨變均有很高的機率導致思覺失調症。在遺傳因素中,目前已經有多個研究證實許多基因突變或是單核苷酸多態性(single nucleotide polymorphism; SNP)、複製數變異(copy number variation; CNV)的異常均為導致思覺失調症的原因之一。而其中候選基因neruexin-1為連接前後突觸的重要蛋白質之一,對於突觸囊泡(synaptic vesicle)的釋放和突觸的可塑性(synaptic plasticity)扮演重要的角色,此基因的缺失和突變在思覺失調症的患者中已被發現。在此研究中,利用果蠅作為模式生物來研究與人類同源的基因Drosophila neurexin 1 (dnrx)在成蟲大腦中神經元的型態與突觸的功能。結果發現抑制dnrx的表達後,在果蠅大腦的觸角葉(antennal lobe)有神經元、軸突與樹突都有減少的現象。而在果蠅的嗅覺系統中,抑制dnrx的表達會造成嗅覺受體神經元(olfactory receptor neurons)的突觸缺失,影響突觸小泡的釋放與突觸的可塑性。而此現象可能與導致思覺失調症的原因有關,對日後在生物腦中研究思覺失調症的致病機轉中有所貢獻。
Schizophrenia is a mental disorder. The clinical symptoms of this disorder are auditory hallucinations, abnormal social behavior and cognitive impairment. The age of onset is usually from adolescence to adulthood. Causes of schizophrenia include environmental factors and genetic factors. Previous studies show that drug abuse, nutritional imbalance and changes in the living or working environment are high risks to cause the people with schizophrenia. In genetic factors, many studies have confirmed that the mutation, single nucleotide polymorphism and copy number variation in some genes may lead to schizophrenia. One of the candidate genes in human is neruexin-1which plays an important role in synaptic vesicle release and synaptic plasticity. Genetic deletion and mutation in this gene are found in some patients. In this study, we used Drosophila as a model organism to investigate the molecular pathogenesis our result showed that dnrx pan-neuronal knockdown may cause the loss of axons and dendrites in the adult brains. In the fly olfactory system, the synaptic function and synaptic vesicular release were affected in this model. The pre- and post- synaptic dysfunction was identified that have established a dnrx animal model to further testing the connectomic pathogenesis of schizophrenia.
摘要 I
Abstract II
Acknowledgement III
Contents IV
Introduction 1
1. Schizophrenia 1
2. Environmental and genetic risk factors in schizophrenia 1
3. The synapse in schizophrenia 2
4. Human gene neurexin in schizophrenia 4
5. Mouse gene neurexin in schizophrenia 6
6. Model organism: Drosophila melanogaster 6
7. Drosophila gene neurexin (dnrx) 7
Materials and Methods 9
1. Drosophila stocks 9
2. Confocal images 9
3. Statistical analysis 10
Results 11
dnrx knockdown decreased the GFP signal in the adult Drosophila brain. 11
dnrx knockdown affected the neuronal function in the Drosophila olfactory system. 13
dnrx knockdown reduced the synaptic vesicles release in the Drosophila olfactory system. 14
dnrx knockdown affected the synapses connectivity in the Drosophila olfactory system. 16
Discussion 18
The expression pattern of Drosophila neurexin in pan-neuron 18
dnrx knockdown decreased the synaptic exocytosis in the synapses may cause by calcium channel impaired. 19
dnrx knockdown led to the synaptic dysfunction in the olfactory system in Drosophila may affect the sleep, learning, and memory. 20
The heterozygous dnrx mutation may affect other protein function and lead to the synaptic dysfunction. 21
Figures 25
Figure 1. The neurexin-neuroligin complex interacted in the synaptogenesis. 25
Figure 2. The protein structure of the human NRXNα, mouse nrxn and Drosophila dnrx. 27
Figure 3. dnrx Knockdown reduced the expressions pattern in Drosophila pan-neuron. 30
Figure 4. dnrx knockdown affected the axon function in Drosophila brain. 32
Figure 5. dnrx knockdown reduced the dendrites in Drosophila brain. 34
Figure 6. dnrx knockdown led to the synaptic vesicle exocytosis dysfunction in Drosophila brain. 36
Figure 7. dnrx Knockdown decreased the GFP signal in Drosophila olfactory system. 38
Figure 8. dnrx knockdown affected the synaptic vesicle release function in Drosophila olfactory system. 41
Figure 9. dnrx knockdown affected the synaptic connectivity in Drosophila olfactory system. 44
References 46
1. Buckley, P.F., et al., Psychiatric comorbidities and schizophrenia. Schizophr Bull, 2009. 35(2): p. 383-402.
2. McGrath, J., et al., Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev, 2008. 30: p. 67-76.
3. Vita, A., et al., Schizophrenia. The Lancet, 2016. 388(10051): p. 1280.
4. Brown, A.S., Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Dev Neurobiol, 2012. 72(10): p. 1272-6.
5. D'Souza, D.C., et al., The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis. Neuropsychopharmacology, 2004. 29(8): p. 1558-72.
6. Kavanagh, D.H., et al., Schizophrenia genetics: emerging themes for a complex disorder. Mol Psychiatry, 2015. 20(1): p. 72-6.
7. Schizophrenia Working Group of the Psychiatric Genomics, C., Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014. 511(7510): p. 421-7.
8. Karayiorgou M, et al., Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci U S A, 1995. 92: p. 7612-7616.
9. Hall, J., et al., Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. Biol Psychiatry, 2015. 77(1): p. 52-8.
10. I.Feinberg, Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research, 1983. 17(4): p. 319-334.
11. Keshavan, M.S., et al., Schizophrenia, "just the facts": what we know in 2008 Part 3: neurobiology. Schizophr Res, 2008. 106(2-3): p. 89-107.
12. Pocklington, A.J., M. O'Donovan, and M.J. Owen, The synapse in schizophrenia. Eur J Neurosci, 2014. 39(7): p. 1059-67.
13. Gejman, P.V., A.R. Sanders, and J. Duan, The role of genetics in the etiology of schizophrenia. Psychiatr Clin North Am, 2010. 33(1): p. 35-66.
14. Sudhof, T.C., Neuroligins and neurexins link synaptic function to cognitive disease. Nature, 2008. 455(7215): p. 903-11.
15. Dalva, M.B., A.C. McClelland, and M.S. Kayser, Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci, 2007. 8(3): p. 206-20.
16. Lewis, D.A., GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Research, 2000. 31(2-3): p. 270-76.
17. Kirov, G., et al., Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet, 2008. 17(3): p. 458-65.
18. Jenkins, A.K., et al., Neurexin 1 (NRXN1) splice isoform expression during human neocortical development and aging. Mol Psychiatry, 2016. 21(5): p. 701-6.
19. Rowen, L., et al., Analysis of the human neurexin genes: alternative splicing and the generation of protein diversity. Genomics, 2002. 79(4): p. 587-97.
20. Peter Scheiffele, et al., Neuroligin Expressed in Nonneuronal Cells Triggers Presynaptic Development in Contacting Axons. Cell, 2000. 101(6): p. 657-669.
21. Shen KC, et al., Regulation of neurexin 1beta tertiary structure and ligand binding through alternative splicing. Structure., 2008. 16(3): p. 422–431.
22. Sheckler, L.R., et al., Crystal structure of the second LNS/LG domain from neurexin 1alpha: Ca2+ binding and the effects of alternative splicing. J Biol Chem, 2006. 281(32): p. 22896-905.
23. Camin Dean, et al., Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci., 2003. 6(7): p. 708-716.
24. Chen, F., et al., The structure of neurexin 1alpha reveals features promoting a role as synaptic organizer. Structure, 2011. 19(6): p. 779-89.
25. Craig, A.M. and Y. Kang, Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol, 2007. 17(1): p. 43-52.
26. Kirov, G., et al., Neurexin 1 (NRXN1) deletions in schizophrenia. Schizophr Bull, 2009. 35(5): p. 851-4.
27. Rujescu, D., et al., Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet, 2009. 18(5): p. 988-96.
28. Schaaf, C.P., et al., Phenotypic spectrum and genotype-phenotype correlations of NRXN1 exon deletions. Eur J Hum Genet, 2012. 20(12): p. 1240-7.
29. Zweier, C., et al., CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am J Hum Genet, 2009. 85(5): p. 655-66.
30. Zahir, F.R., et al., A patient with vertebral, cognitive and behavioural abnormalities and a de novo deletion of NRXN1alpha. J Med Genet, 2008. 45(4): p. 239-43.
31. St Clair, D., Copy number variation and schizophrenia. Schizophr Bull, 2009. 35(1): p. 9-12.
32. Carsten Reissner, Fabian Runkel, and M. Missler, Neurexins. Genome Biology, 2013. 14: p. 213.
33. Mark R. Ethertona, et al., Mouse neurexin-1α deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci U S A., 2009. 106(42): p. 17998-18003.
34. Rabaneda, L.G., et al., Neurexin dysfunction in adult neurons results in autistic-like behavior in mice. Cell Rep, 2014. 8(2): p. 338-46.
35. Grayton, H.M., et al., Altered social behaviours in neurexin 1alpha knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS One, 2013. 8(6): p. e67114.
36. Sons, M.S., et al., alpha-Neurexins are required for efficient transmitter release and synaptic homeostasis at the mouse neuromuscular junction. Neuroscience, 2006. 138(2): p. 433-46.
37. Thomas E. Lloyd and J. Paul Taylor, Flightless Flies: Drosophila models of neuromuscular disease. Annals of the New York Academy of Sciences, 2010.
38. Bier, E., Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet, 2005. 6(1): p. 9-23.
39. L Y Jan and Y.N. Jan, Properties of the larval neuromuscular junction in Drosophila melanogaster. J Physiol., 1976. 262: p. 189-214189.
40. Quinn WG, Harris WA, and B. S., Conditioned Behavior in Drosophila melanogaster. Proc Natl Acad Sci USA, 1974. 71(3): p. 708-12.
41. Bellen, H.J., C. Tong, and H. Tsuda, 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci, 2010. 11(7): p. 514-22.
42. Tabuchi, K. and T.C. Sudhof, Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics, 2002. 79(6): p. 849-59.
43. Li, J., et al., Crucial role of Drosophila neurexin in proper active zone apposition to postsynaptic densities, synaptic growth, and synaptic transmission. Neuron, 2007. 55(5): p. 741-55.
44. Larkin, A., et al., Neurexin-1 regulates sleep and synaptic plasticity in Drosophila melanogaster. Eur J Neurosci, 2015. 42(7): p. 2455-66.
45. Tong, H., et al., Neurexin regulates nighttime sleep by modulating synaptic transmission. Sci Rep, 2016. 6: p. 38246.
46. Sun, M., X. Zeng, and W. Xie, Temporal and spatial expression of Drosophila Neurexin during the life cycle visualized using a DNRX-Gal4/UAS-reporter. Sci China Life Sci, 2016. 59(1): p. 68-77.
47. Dietzl, G., et al., A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature, 2007. 448(7150): p. 151-6.
48. van der Vaart, B., et al., CFEOM1-associated kinesin KIF21A is a cortical microtubule growth inhibitor. Dev Cell, 2013. 27(2): p. 145-60.
49. Kristina Schimmelpfeng Henthorna, et al., A role for kinesin heavy chain in controlling vesicle transport into dendrites in Drosophila. Molecular Biology of the Cell (MBoC), 2011. 22: p. 4038-4046.
50. Anne E. West, Rachael L. Neve, and K.M. Buckley, Identification of a Somatodendritic Targeting Signal in the Cytoplasmic Domain of the Transferrin Receptor. Journal of Neuroscience, 1997: p. 6038-6047.
51. Lee, J. and J.T. Littleton, Transmembrane tethering of synaptotagmin to synaptic vesicles controls multiple modes of neurotransmitter release. Proc Natl Acad Sci U S A, 2015. 112(12): p. 3793-8.
52. Zhang, Y.Q., C.K. Rodesch, and K. Broadie, Living synaptic vesicle marker: synaptotagmin-GFP. Genesis, 2002. 34(1-2): p. 142-5.
53. Wilson, R.I., Early olfactory processing in Drosophila: mechanisms and principles. Annu Rev Neurosci, 2013. 36: p. 217-41.
54. Olsen, S.R., V. Bhandawat, and R.I. Wilson, Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron, 2007. 54(1): p. 89-103.
55. Kavalali, E.T. and E.M. Jorgensen, Visualizing presynaptic function. Nat Neurosci, 2014. 17(1): p. 10-6.
56. Feinberg, E.H., et al., GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron, 2008. 57(3): p. 353-63.
57. Li, Y., A. Guo, and H. Li, CRASP: CFP reconstitution across synaptic partners. Biochem Biophys Res Commun, 2016. 469(3): p. 352-6.
58. Zeng, X., et al., Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila. FEBS Lett, 2007. 581(13): p. 2509-16.
59. Chen, K., et al., Neurexin in embryonic Drosophila neuromuscular junctions. PLoS One, 2010. 5(6): p. e11115.
60. Taniguchi, H., et al., Silencing of neuroligin function by postsynaptic neurexins. J Neurosci, 2007. 27(11): p. 2815-24.
61. Sudhof, T.C. and J. Rizo, Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol, 2011. 3(12).
62. Neupert, C., et al., Regulated Dynamic Trafficking of Neurexins Inside and Outside of Synaptic Terminals. J Neurosci, 2015. 35(40): p. 13629-47.
63. Missler M, et al., Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature, 2003. 423: p. 939-948.
64. Pereda, A.E., Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci, 2014. 15(4): p. 250-63.
65. Harrison, V., et al., Compound heterozygous deletion of NRXN1 causing severe developmental delay with early onset epilepsy in two sisters. Am J Med Genet A, 2011. 155A(11): p. 2826-31.
66. Busto, G.U., I. Cervantes-Sandoval, and R.L. Davis, Olfactory learning in Drosophila. Physiology (Bethesda), 2010. 25(6): p. 338-46.
67. Davis, R.L., Olfactory learning. Neuron, 2004. 44(1): p. 31-48.
68. Pak, C., et al., Human Neuropsychiatric Disease Modeling using Conditional Deletion Reveals Synaptic Transmission Defects Caused by Heterozygous Mutations in NRXN1. Cell Stem Cell, 2015. 17(3): p. 316-28.
69. Chen, K. and D.E. Featherstone, Pre and postsynaptic roles for Drosophila CASK. Mol Cell Neurosci, 2011. 48(2): p. 171-82.
70. Malik, B.R. and J.J. Hodge, CASK and CaMKII function in Drosophila memory. Front Neurosci, 2014. 8: p. 178.
71. Linhoff, M.W., et al., An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron, 2009. 61(5): p. 734-49.
72. de Wit, J., et al., LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation. Neuron, 2009. 64(6): p. 799-806.
73. Francks, C., et al., LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol Psychiatry, 2007. 12(12): p. 1129-39, 1057.
74. M. Irie, Y.H., et al., Binding of neuroligins to PSD-95. Science, 1997. 277(5331): p. 1511-1515.
75. Graf, E.R., et al., Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell, 2004. 119(7): p. 1013-26.
76. Quinn, D.P., et al., Pan-neurexin perturbation results in compromised synapse stability and a reduction in readily releasable synaptic vesicle pool size. Sci Rep, 2017. 7: p. 42920.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *