帳號:guest(3.17.76.126)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鍾佳玲
作者(外文):Chung, Chia-Ling
論文名稱(中文):抗菌胜肽與抗生素合併使用對於多重抗藥性臨床菌株之協同功效研究
論文名稱(外文):Synergistic effects of ultrashort antimicrobial peptides and antibiotics against multi-drug resistant clinical bacteria
指導教授(中文):程家維
指導教授(外文):Cheng, Jya-Wei
口試委員(中文):陳金榜
徐尚德
口試委員(外文):Chen, Chin-Pan
Hsu, Shang-Te
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:104080522
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:35
中文關鍵詞:抗菌胜肽協同功效多重抗藥性萬古黴素
外文關鍵詞:antimicrobial peptidecombination effectmulti-drug resistantvancomycin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:146
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
多重抗藥性菌株造成無藥可醫的問題已經成為全世界迫切待解決的議題之一,其中一種解決策略是利用抗菌胜肽與傳統的抗生素共同處理以期能夠達到協同治療的效果。抗菌胜肽廣泛存在於植物與動物中,對於抵抗病原菌的入侵佔相當重要的角色,若能與抗生素藥物產生協同效果,可以有更廣效的抗菌效果、減少治療的劑量及副作用、縮短治療療程、減少產生抗藥性菌株的機率。在先前的研究中,S1系列的抗菌胜肽具有很好的抗菌活性、耐鹽性以及低溶血性,本實驗的目的是探討S1系列的抗菌胜肽與廣泛在臨床被使用的三大類抗生素Vancomycin 、Tetracycline、Ciprofloxacin,針對臨床分離的多重抗藥性菌株,包括革蘭氏陽性菌Enterococcus faecium以及革蘭氏陰性菌Acinetobacter baumannii、Escherichia coli,分析是否具有協同效果以及探討其協同機制。首先測試藥劑最小抑菌濃度試驗證實抗菌胜肽W5KA9W、S1Nal及S1Nal2對多重抗藥性菌株皆具有良好的殺抑菌功效;以棋盤格殺菌試驗(checkerboard method)試驗的結果顯示多數呈現協同效果,而且W5KA9W對於選用的抗生素具有更全面性的協同效果;以螢光標定的vancomycin證實抗菌胜肽處理的菌株確實能夠增加vancomycin 進入細菌標的位置作用。由於抗菌胜肽的抗菌機制是針對細菌細胞膜以其攜帶的正電性及疏水性達到擾動膜,甚至破膜的效果。我們以calcein-AM 試劑分析的結果顯示S1系列抗菌胜肽具有快速且優異的破膜能力,而且破膜的趨勢與協同能力具有相關性,推測其破膜能力可以破壞細菌膜細胞膜完整性並使抗生素易於進入作用的標的位置。
The rapid development and spread of bacterial resistance to conventional antibiotics has become a serious and urgent global issue. One of the strategies is to combine antimicrobial peptides (AMPs) with the conventional antibiotics, to achieve synergistic effect against multi-drug resistant bacteria. The advantages of synergistic treatment including killing a broader spectrum of microbes, decreasing the therapeutic dose, lowering side effects and treatment duration and reducing the risks of creating multi-drug resistant strains. In the previous studies, we designed a series of variants, W5KA9W, S1, S1-Nal and S1-Nal2, which revealed strong antibacterial activity, good salt resistant and low hemolytic activity.
In this study, we explore synergistic effects and mechanisms of S1 series AMPs and antibiotics (vancomycin, tetracycline, ciprofloxacin) against multi-drug resistant clinical bacteria, including Gram-positive bacteria: Enterococcus faecium, and Gram-negative bacteria: Acinetobacter baumannii and Escherichia coli. The Minimum inhibitory concentration assay results showed W5KA9W, S1Nal, and S1Nal2 have strong antibacterial activity against multi-drug resistant bacteria. And the checkerboard method demonstrated W5KA9W displayed more comprehensive synergism with antibiotics. Pre-treatment of resistant strains with AMPs led to increased uptake of bodipy labeled vancomycin.
AMPs characterized by their positive charges and amphipathic features, which enable them to cause the interference or even the disruption of the membrane. The result of calcein-AM assay demonstrated that S1 series AMPs have rapid and effective permeabilizing activity, and the activity is correlated with the synergism results. The result supports our hypothesis that the membrane-permeabilizing activity may destroy the integrity of bacteria membrane and lead to increased access of antibiotics to their target.
中文摘要 I
Abstract II
Contents IV
Chapter 1. Introduction 1
1.1 Antibiotic resistance 1
1.2 Antimicrobial peptides 2
1.3 Synergy effect 4
1.4 The aim of this study 5
Chapter 2. Materials and methods 7
2.1 Materials 7
2.2 Quantization of the peptides 8
2.3 Minimum inhibitory concentration assay 9
2.4 Checkerboard method 10
2.5 Calcein acetoxymethylester (calcein AM) 11
2.6 Fluorescence microscope 12
Chapter 3. Results 14
3.1 Bactericidal activity 14
3.2 FIC index 15
3.3 Peptides increased the uptake of labeled vancomycin 16
3.4 Combination effect in integrity of bacterial membrane 17
Chapter 4. Conclusion and Discussion 18
Figures and Tables 22
Figure 1. The structure of antibiotics 22
Figure 2. Fluorescence Microscopy: Uptake of labeled vancomycin in VRE strain 23
Figure 3 Fluorescence Microscopy: Uptake of labeled vancomycin in Acinetobacter baumannii strains 24
Figure 4. Fluorescence Microscopy: Uptake of labeled vancomycin in Escherichia coli strains 25
Figure 5. Permeabilization of the cytoplasmic membrane of VRE 26
Figure 6. Permeabilization of the cytoplasmic membrane of Acinetobacter baumannii strains 27
Figure 7. Permeabilization of the cytoplasmic membrane of Escherichia coli strains 28
Table 1. Antimicrobial peptide sequence 29
Table 2. Minimum inhibitory concentration of antimicrobial peptides and antibiotics. 30
Table 3. The fractional inhibitory concentration index range of peptides in combination with antibiotics against multidrug resistant bacteria. 31
References 32
1. Centers for Disease Control and Prevention[homepage on the internet]. Antibiotic resistance questions and answers. 2015; Available from: https://www.cdc.gov/getsmart/community/about/antibiotic-resistance-faqs.html.
2. Haley Van Wyk, Antibiotic resistance: review. SA Pharmaceutical Journal, 2015. 82(3): p. 20-23.
3. Mitchell L Cohen, Epidemiology of drug resistance: implications for a post-antimicrobial era. Science(Washington), 1992. 257(5073): p. 1050-1055.
4. Dan I Andersson and Bruce R Levin, The biological cost of antibiotic resistance. Current opinion in microbiology, 1999. 2(5): p. 489-493.
5. Haroon Mohammad, Shankar Thangamani, and Mohamed N Seleem, Antimicrobial peptides and peptidomimetics-potent therapeutic allies for staphylococcal infections. Current pharmaceutical design, 2015. 21(16): p. 2073-2088.
6. Michael Zasloff, Antimicrobial peptides of multicellular organisms. nature, 2002. 415(6870): p. 389-395.
7. Håvard Jenssen, Pamela Hamill, and Robert EW Hancock, Peptide antimicrobial agents. Clinical microbiology reviews, 2006. 19(3): p. 491-511.
8. Maria Papagianni, Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnology advances, 2003. 21(6): p. 465-499.
9. Katsumi Matsuzaki, Why and how are peptide–lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1999. 1462(1): p. 1-10.
10. Tobias Schuerholz, Klaus Brandenburg, and Gernot Marx, Antimicrobial peptides and their potential application in inflammation and sepsis. Critical Care, 2012. 16(2): p. 207.
11. Margherita Zanetti, Cathelicidins, multifunctional peptides of the innate immunity. Journal of leukocyte biology, 2004. 75(1): p. 39-48.
12. Yuan Zhang, et al., In vitro synergistic activities of antimicrobial peptide brevinin-2CE with five kinds of antibiotics against multidrug-resistant clinical isolates. Current microbiology, 2014. 68(6): p. 685-692.
13. Wioletta Baranska-Rybak, et al., Activity of antimicrobial peptides and conventional antibiotics against superantigen positive Staphylococcus aureus isolated from the patients with neoplastic and inflammatory erythrodermia. Chemotherapy research and practice, 2011. 2011.
14. Andrew P Desbois, Curtis G Gemmell, and Peter J Coote, In vivo efficacy of the antimicrobial peptide ranalexin in combination with the endopeptidase lysostaphin against wound and systemic meticillin-resistant Staphylococcus aureus (MRSA) infections. International journal of antimicrobial agents, 2010. 35(6): p. 559-565.
15. Ben CL Chan, et al., Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. Journal of ethnopharmacology, 2011. 137(1): p. 767-773.
16. Khairunnisa Abdul Ghaffar, et al., Levofloxacin and indolicidin for combination antimicrobial therapy. Current drug delivery, 2015. 12(1): p. 108-114.
17. Robert EW Hancock, Peptide antibiotics. The Lancet, 1997. 349(9049): p. 418-422.
18. Maria Ngu-Schwemlein, et al., In vitro synergy between some cationic amphipathic cyclooctapeptides and antibiotics. Australian Journal of Chemistry, 2015. 68(2): p. 218-223.
19. Hyemin Choi and Dong Gun Lee, Synergistic effect of antimicrobial peptide arenicin-1 in combination with antibiotics against pathogenic bacteria. Research in microbiology, 2012. 163(6): p. 479-486.
20. Dewey G McCafferty, et al., Synergy and duality in peptide antibiotic mechanisms. Current opinion in chemical biology, 1999. 3(6): p. 672-680.
21. Arnaud Marquette, et al., Magainin 2-PGLa Interactions in Membranes-Two Peptides that Exhibit Synergistic Enhancement of Antimicrobial Activity. Current topics in medicinal chemistry, 2016. 16(1): p. 65-75.
22. Anne-Kathrin Pöppel, et al., Antimicrobial peptides expressed in medicinal maggots of the blow fly Lucilia sericata show combinatorial activity against bacteria. Antimicrobial agents and chemotherapy, 2015. 59(5): p. 2508-2514.
23. Guozhi Yu, et al., Combination effects of antimicrobial peptides. Antimicrobial agents and chemotherapy, 2016. 60(3): p. 1717-1724.
24. Hui‐Yuan Yu, et al., Rational Design of Tryptophan‐Rich Antimicrobial Peptides with Enhanced Antimicrobial Activities and Specificities. Chembiochem, 2010. 11(16): p. 2273-2282.
25. Bengt Erik Haug, Merete L Skar, and John S Svendsen, Bulky aromatic amino acids increase the antibacterial activity of 15‐residue bovine lactoferricin derivatives. Journal of Peptide Science, 2001. 7(8): p. 425-432.
26. Hung-Lun Chu, et al., Boosting salt resistance of short antimicrobial peptides. Antimicrobial agents and chemotherapy, 2013. 57(8): p. 4050-4052.
27. Satish K Pillai, RC Moellering, and George M Eliopoulos, Antimicrobial combinations. Antibiotics in laboratory medicine, 2005. 5: p. 365-440.
28. Emel Mataraci and Sibel Dosler, In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrobial agents and chemotherapy, 2012. 56(12): p. 6366-6371.
29. Mohamed F Mohamed, Ahmed Abdelkhalek, and Mohamed N Seleem, Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Scientific Reports, 2016. 6.
30. MJ Hall, RF Middleton, and D Westmacott, The fractional inhibitory concentration (FIC) index as a measure of synergy. Journal of Antimicrobial Chemotherapy, 1983. 11(5): p. 427-433.
31. Yan Q Xiong, et al., Functional interrelationships between cell membrane and cell wall in antimicrobial peptide-mediated killing of Staphylococcus aureus. Antimicrobial agents and chemotherapy, 2005. 49(8): p. 3114-3121.
32. M Essodaigui, HJ Broxterman, and A Garnier-Suillerot, Kinetic Analysis of Calcein and Calcein− Acetoxymethylester Efflux Mediated by the Multidrug Resistance Protein and P-Glycoprotein. Biochemistry, 1998. 37(8): p. 2243-2250.
33. Su-Pin Koo, Arnold S Bayer, and Michael R Yeaman, Diversity in antistaphylococcal mechanisms among membrane-targeting antimicrobial peptides. Infection and immunity, 2001. 69(8): p. 4916-4922.
34. PA Wayne, CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. CLSI Document M100-S25, Clinical and Laboratory Standards Institute, 2015.
35. George G Khachatourians, Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. Canadian Medical Association Journal, 1998. 159(9): p. 1129-1136.
36. Cynthia G Whitney, et al., Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States. New England Journal of Medicine, 2000. 343(26): p. 1917-1924.
37. Kim A Brogden, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature reviews microbiology, 2005. 3(3): p. 238-250.
38. Ya-Han Chih, et al., Ultrashort antimicrobial peptides with antiendotoxin properties. Antimicrobial agents and chemotherapy, 2015. 59(8): p. 5052-5056.
39. K Hiramatsu, et al., Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. The Journal of antimicrobial chemotherapy, 1997. 40(1): p. 135-136.
40. Keiichi Hiramatsu, Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. The Lancet infectious diseases, 2001. 1(3): p. 147-155.
41. Eefjan Breukink and Ben de Kruijff, Lipid II as a target for antibiotics. Nature reviews Drug discovery, 2006. 5(4): p. 321-323.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *