帳號:guest(18.191.237.201)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡昆霖
作者(外文):Tsai, Kun-Lin
論文名稱(中文):結合分子動力學模擬與新穎的藥物排序方法的自動化老藥新用篩選平台DRDOCK:以自噬作用蛋白ATG4B、LC3及SARS-CoV2偽結為標的
論文名稱(外文):An automatic drug repurposing platform DRDOCK integrating MD simulations and a novel drug ranking scheme: using autophagins ATG4B, LC3, and SARS-CoV2 pseudoknot as targets
指導教授(中文):楊立威
指導教授(外文):Yang, Lee-Wei
口試委員(中文):蔡惠旭
徐志文
洪瑞鴻
張芫瑜
口試委員(外文):Tsai, Hui-Hsu
Shu, Chih-Wen
Hung, Jui-Hung
Chang, Yuan-Yu
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:104080518
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:228
中文關鍵詞:老藥新用藥物篩選分子對接分子動力學模擬MM/GBSAANMLRTFDA核准藥物ATG4Btioconazole異位調控DRDOCKSARS-CoV2COVID-19偽結-1轉錄框降轉移 (-1 PRF)
外文關鍵詞:drug repurposingdrug screeningmolecular dockingmolecular dynamics (MD) simulationsMM/GBSAANMLRTFDA-approved drugsATG4Btioconazoleallosteric regulationDRDOCKSARS-CoV2COVID-19pseudoknot-1 programmed ribosomal frameshifting (-1 PRF)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:217
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
老藥新用是透過利用安全可行並已用在臨床治療上的藥物來抑制其他的藥物標的以治療其他疾病的一種藥物開發的策略。由於新藥開發困難,曠日費時,難以短時期針對突然出現並威脅生命的傳染病做出應對(如2020起的新冠肺炎大流行),老藥新用儼然已成為一個常見的策略找出安全且能治療新的適應症的「新藥」。我們收集了2016個美國FDA核准的用藥並用電腦建構出其3D結構和力場參數,同時也建構了整合了分子對接及分子動力學模擬的電腦自動化虛擬藥物篩選流程。為了促進老藥新用,我們建置了一個新的線上藥物篩選網站名叫DRDOCK, Drug Repurposing DOcking with Conformation-sampling and pose re-ranKing。其致力於提供一般的研究和臨床人員能夠使用一個完全自動化的虛擬藥物篩選流程,並根據能夠從無效藥中辨認出真正的有效藥的一個合理且可靠的排名方法來找出針對特定的標的蛋白上的標的位的有效藥。我們也使用此藥物篩選流程找出了一個美國FDA核准的藥物,tioconazole,來以做為一個正構抑制劑改用於一個與腫瘤發展相關且於好幾種癌症中高度表達的一個藥物標的ATG4B。此外,我們運用了簡單的物理模型,anisotropic network model (ANM) 和linear response theory (LRT),與分子動力學模擬來了解結晶結構中所呈現由LC3B導致的可調節ATG4B酵素活性的分子間異位調控中的分子細節。我們並進一步設計了透過能與ATG4B N端尾巴競爭LC3B上的結合位的胜肽並證明其確能抑制ATG4B的酵素活性。此結果提供了未來一個開發或搭配使用的異位調控藥來抑制ATG4B的新的策略。最後,我們使用了此藥物篩選流程來尋找藥物能夠針對nsp16及SARS-CoV2的RNA偽結結構結合並期望降低其酵素催化 及 -1 programmed ribosomal frameshifting (-1 PRF)的效率,希望能夠找到能立即使用在COVID-19治療上的藥物。
Drug repurposing is a drug development strategy where a drug with known prescription and safety for clinical treatment is reused to target other drug targets and disease treatments. Due to the slow growth of the number of yearly reported new drugs, the need for new treatments for incurable diseases, and to achieve prompt reaction against the emergent life-threatened epidemics, drug repurposing has become a prevalent strategy to polish the old drugs for new indications. We collect and compile a set of 2016 FDA-approved drugs of which the 3D structures and force field parameters were computationally generated, and build an automatic virtual drug screening pipeline that integrates the molecular docking and molecular dynamics (MD) simulations. To facilitate the drug repurposing, we construct a new online drug screening webserver called DRDOCK, Drug Repurposing DOcking with Conformation-sampling and pose re-ranKing. It aims to provide the general researchers and clinicians the access to this fully automated virtual drug screening pipeline to prioritize potent drugs that could target a specified target site of a given target protein, according to a rational and reliable ranking algorithm calibrated for distinguishing the true binders from decoys. We also use the automatic virtual drug screening pipeline to identify that an FDA-approved drug, tioconazole, can be repurposed as an orthosteric inhibitor of autophagin ATG4B, a tumor progression-associated drug target that has been found to highly expressed in several cancers. Besides, we use the simplified physical models, anisotropic network model (ANM) and linear response theory (LRT), and MD simulations to understand the molecular details behind the intermolecular allosteric regulation of ATG4B enzyme activity mediated by LC3B suggested from solved crystal structures. We further design the peptides that can interfere with this allosteric regulation by competing with the ATG4B N-terminal tail to the LC3B binding site and therefore reduce ATG4B activity, which suggested a new strategy of designing and combining allosteric drug to target ATG4B. Finally, we used our drug screening pipeline to seek drugs that could target the pseudoknot and impair the -1 programmed ribosomal frameshifting (-1 PRF) efficiency of SARS-CoV2 for ready use in COVID-19 treatment.
Dedication - 2 -
獻詞 - 3 -
Acknowledgments - 4 -
English Abstract - 5 -
中文摘要 - 6 -
Table of Contents - 7 -
List of Figures - 11 -
List of Tables - 14 -
List of Movies - 16 -
Chapter 1. DRDOCK: A Drug Repurposing platform integrating automated docking, simulations and a log-odds-based drug ranking scheme - 20 -
1.1 Introduction - 20 -
1.2 Materials and methods - 24 -
1.2.1 In silico FDA-approved drug library - 24 -
1.2.2 Protein preprocessing - 24 -
1.2.3 Benchmark set curated for the development of drug ranking methods - 25 -
1.2.4 Virtual drug screening and its resulting features - 27 -
1.2.5 Ad hoc method for drug ranking - 28 -
1.2.6 Log-odds score (LOD score) - 29 -
1.2.7 Feature ranking score (FRS) - 30 -
1.2.8 Performance evaluation of the ranking methods - 31 -
1.2.9 Molecular dynamics (MD) simulation and MM/GBSA - 32 -
1.3 Website - 34 -
1.3.1 Architecture - 34 -
1.3.2 Workflow - 34 -
1.3.3 Result rendering - 35 -
1.4 Results - 38 -
1.5 Application - 47 -
1.6 Discussion - 51 -
1.7 Conclusions - 53 -
1.8 Supplementary information - 53 -
1.8.1 Supplementary results - 53 -
1.8.2 Supplementary figures - 55 -
1.8.3 Supplementary tables - 59 -
1.9 References - 60 -
Chapter 2. Drug Repurposing Screening Identifies Tioconazole as an ATG4 Inhibitor that Suppresses Autophagy and Sensitizes Cancer Cells to Chemotherapy - 79 -
2.1 Introduction - 79 -
2.2 Materials and Methods - 81 -
2.2.1 Reagents and Cell Culture - 81 -
2.2.2 Docking and Explicit Solvent MD Simulations Used in Drug Screening and Inhibitory Mechanism Studies - 82 -
2.2.3 Structure Preparation - 83 -
2.2.4 ATG4 Reporter Assays - 83 -
2.2.5 Autophagic Flux and Immunoblotting - 84 -
2.2.6 Tumor Xenograft - 85 -
2.2.7 Bimolecular Fluorescence Complementation Assay - 86 -
2.2.8 Fluorescence Microscopy - 86 -
2.2.9 Transmission Electron Microscopy (TEM) - 86 -
2.2.10 Cell viability assay - 87 -
2.2.11 Real-Time PCR - 87 -
2.2.12 Flow Cytometry for Mitochondrial Membrane Potential and Apoptosis - 88 -
2.2.13 Spheroid Cell Culture and Live/ Dead Assay - 88 -
2.2.14 Statistical Analysis - 89 -
2.3 Results - 89 -
2.3.1 In Silico Drug-repurposing Screening to Identify Tioconazole as an ATG4 Inhibitor - 89 -
2.3.2 Docking and MD Simulations Further Support Direct Blockage of the ATG4B Active Site as the Primary Inhibitory Effect of Tioconazole - 95 -
2.3.3 Tioconazole Accumulates Autophagosomes and Diminishes Autophagic Flux in Cancer Cells - 98 -
2.3.4 Tioconazole Sensitizes Cancer Cells to Starvation and Chemotherapeutic Drugs - 101 -
2.3.5 Tioconazole Enhances Chemotherapy Efficacy in Spheroid Cell Culture and Xenografted Tumors - 107 -
2.4 Discussion - 110 -
2.5 References - 114 -
2.6 Supplementary information - 119 -
2.6.1 Supplemental experimental procedures - 119 -
2.6.2 Supplemental figures - 123 -
2.6.3 Supplemental tables - 128 -
2.6.4 Supplemental movies - 129 -
2.6.5 Supplemental references - 129 -
Chapter 3. The autophagin ATG4B encodes an LC3B-regulated intrinsic intermolecular allostery targetable for cancer therapy - 133 -
3.1 Introduction - 133 -
3.2 Methods - 138 -
3.2.1 Structures preparation - 138 -
3.2.2 Anisotropic Network Model (ANM) - 138 -
3.2.3 Time-Independent Linear Response Theory (ti-LRT) - 139 -
3.2.4 Molecular Dynamics (MD) simulations - 139 -
3.2.5 In silico peptide design - 140 -
3.2.6 Protein expression and purification - 141 -
3.2.7 Peptides synthesis - 143 -
3.2.8 ATG4B cleavage assay - 143 -
3.2.9 ATG4B activity reporter assay - 144 -
3.2.10 NMR spectroscopy and chemical shift perturbation - 144 -
3.2.11 Cell viability assay - 145 -
3.3 Results - 145 -
3.3.1 X-ray crystallographically resolved difference in active sites of open and closed forms of ATG4B - 145 -
3.3.2 The binding of LC3B on ATG4B N-terminal tail perturbed the intrinsic dynamics of ATG4B and induced intermolecular allosteric regulation - 146 -
3.3.3 LC3-induced allosteric regulation of ATG4B can modulate the active site conformation and enhance to the ligand binding stability - 149 -
3.3.4 In silico designed peptides mimicking ATG4B N-terminus for LC3B binding showed moderate inhibition of ATG4B enzyme activity - 152 -
3.3.5 The inhibitory effect of the designed peptides to ATG4B activity resulted from their binding to the LIR binding pocket in LC3B - 158 -
3.3.6 The designed peptides inhibited the viability of cancer cell line - 162 -
3.4 Discussions - 165 -
3.5 Conclusions - 170 -
3.6 Supplementary information - 171 -
3.7 References - 181 -
Chapter 4. Repurpose FDA-approved drugs as SARS-CoV2 -1 PRF attenuator using structural modeling and virtual drug screening for COVID-19 treatment - 194 -
4.1 Introduction - 194 -
4.2 Methods - 196 -
4.2.1 Sequence comparison of COVID-19 and SARS pseudoknot and modeling of COVID-19 pseudoknot 3D structure - 196 -
4.2.2 Computational drug screening targeting COVID-19 pseudoknot for 2016 FDA-approved drugs - 198 -
4.2.3 Plasmid construction and purification - 200 -
4.2.4 In vitro transcription and translation - 201 -
4.2.5 Dual luciferase assays for measurement of -1 frameshifting efficiency - 201 -
4.2.6 Molecular similarity search - 202 -
4.3 Results and discussions - 202 -
4.3.1 Computationally modeled COVID-19 virus pseudoknot structure forms stable characteristic secondary and tertiary structures after 1 µs MD simulations - 202 -
4.3.2 Virtual drug screening on 2016 FDA-approved drugs identifies drugs that have favorable binding toward particular sites in the SARS-CoV2 pseudoknot (PKV2) - 204 -
4.3.3 Dual luciferase assays showed no effect on the -1 frameshifting efficiency for neither the compound 43 and selected FDA drugs - 207 -
4.4 Discussion - 210 -
4.5 Supplementary information - 212 -
4.6 References - 215 -
Chapter 5. Conclusions - 226 -
Ahinko, M., Niinivehmas, S., Jokinen, E., Pentikäinen, O.T., 2018. Suitability of MMGBSA for the selection of correct ligand binding modes from docking results. Chemical Biology & Drug Design 93, 522–538. doi:10.1111/cbdd.13446
Alonso, H., Bliznyuk, A.A., Gready, J.E., 2006. Combining docking and molecular dynamic simulations in drug design [WWW Document]. URL https://onlinelibrary.wiley.com/doi/full/10.1002/med.20067 (accessed 11.9.20).
Ashburn, T.T., Thor, K.B., 2004. Drug repositioning: identifying and developing new uses for existing drugs. Nature Reviews Drug Discovery 3, 673–683. doi:10.1038/nrd1468
Avorn, J., 2015. The $2.6 Billion Pill — Methodologic and Policy Considerations. New England Journal of Medicine 372, 1877–1879. doi:10.1056/nejmp1500848
Bakan, A., Bahar, I., 2009. The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proceedings of the National Academy of Sciences 106, 14349–14354. doi:10.1073/pnas.0904214106
Bakan, A., Nevins, N., Lakdawala, A.S., Bahar, I., 2012. Druggability Assessment of Allosteric Proteins by Dynamics Simulations in the Presence of Probe Molecules. Journal of Chemical Theory and Computation 8, 2435–2447. doi:10.1021/ct300117j
Ballester, P.J., Mitchell, J.B.O., 2010. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics 26, 1169–1175. doi:10.1093/bioinformatics/btq112
Barratt, M.J., Frail, D., 2012. Drug repositioning: Bringing new life to shelved assets and existing drugs. Wiley-Blackwell (an imprint of John Wiley & Sons Ltd), Chicester.
Bender, A.T., Gardberg, A., Pereira, A., Johnson, T., Wu, Y., Grenningloh, R., Head, J., Morandi, F., Haselmayer, P., Liu-Bujalski, L., 2017. Ability of Bruton’s Tyrosine Kinase Inhibitors to Sequester Y551 and Prevent Phosphorylation Determines Potency for Inhibition of Fc Receptor but not B-Cell Receptor Signaling. Molecular Pharmacology 91, 208–219. doi:10.1124/mol.116.107037
Berman, H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E., 2000. The Protein Data Bank. Nucleic Acids Research 28, 235–242. doi:10.1093/nar/28.1.235
Cao, Y., Li, L., 2014. Improved protein–ligand binding affinity prediction by using a curvature-dependent surface-area model. Bioinformatics 30, 1674–1680. doi:10.1093/bioinformatics/btu104
Case, D.A., Belfon, K., Ben-Shalom, I.Y., Brozell, S.R., Cerutti, D.S., Cheatham, T.E., III, Cruzeiro, V.W.D., Darden, T.A., Duke, R.E., Giambasu, G., Gilson, M.K., Gohlke, H. Goetz, A.W., Harris, R., Izadi, S., Kasavajhala, K., Kovalenko, A., Krasny, R., Kurtzman, T., Lee, T.S., LeGrand, S., Li, P., Lin, C., Liu, J., Luchko, T., Luo, R., Man, V., Merz, K.M., Miao, Y., Mikhailovskii, O., Monard, G., Nguyen, H., Onufriev, A., Pan, F., Pantano, S., Qi, R., Roe, D.R., Roitberg, A., Sagui, C., Schott-Verdugo, S., Shen, J., Simmerling, C.L., Skrynnikov, N., Smith, J., Swails, J., Walker, R.C., Wang, J., Wilson, L., Wolf, R.M., Wu, X., York, D.M. and Kollman, P.A., 2020. AMBER 2020, University of California, San Francisco.
Chang, C.-C., Khan, I., Tsai, K.-L., Li, H., Yang, L.-W., Chou, R.-H., Yu, C., 2016. Blocking the interaction between S100A9 and RAGE V domain using CHAPS molecule: A novel route to drug development against cell proliferation. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1864, 1558–1569. doi:10.1016/j.bbapap.2016.08.008
Chang, C.-E.A., Chen, W., Gilson, M.K., 2007. Ligand configurational entropy and protein binding. Proceedings of the National Academy of Sciences 104, 1534–1539. doi:10.1073/pnas.0610494104
Chen, T.-F., Chang, Y.-C., Hsiao, Y., Lee, K.-H., Hsiao, Y.-C., Lin, Y.-H., Tu, Y.-C.E., Huang, H.-C., Chen, C.-Y., Juan, H.-F., 2020. DockCoV2: a drug database against SARS-CoV-2. Nucleic Acids Research 49. doi:10.1093/nar/gkaa861
Chrencik, J.E., Patny, A., Leung, I.K., Korniski, B., Emmons, T.L., Hall, T., Weinberg, R.A., Gormley, J.A., Williams, J.M., Day, J.E., Hirsch, J.L., Kiefer, J.R., Leone, J.W., Fischer, H.D., Sommers, C.D., Huang, H.-C., Jacobsen, E., Tenbrink, R.E., Tomasselli, A.G., Benson, T.E., 2010. Structural and Thermodynamic Characterization of the TYK2 and JAK3 Kinase Domains in Complex with CP-690550 and CMP-6. Journal of Molecular Biology 400, 413–433. doi:10.1016/j.jmb.2010.05.020
Cleary, E.G., Beierlein, J.M., Khanuja, N.S., Mcnamee, L.M., Ledley, F.D., 2018. Contribution of NIH funding to new drug approvals 2010–2016. Proceedings of the National Academy of Sciences 115, 2329–2334. doi:10.1073/pnas.1715368115
Cover, T.M., Thomas, J.A., 2006. CHAPTER 2 ENTROPY, RELATIVE ENTROPY, AND MUTUAL INFORMATION, in: Elements of Information Theory. Wiley, Hoboken, NJ.
Cui, J.J., Tran-Dubé Michelle, Shen, H., Nambu, M., Kung, P.-P., Pairish, M., Jia, L., Meng, J., Funk, L., Botrous, I., Mctigue, M., Grodsky, N., Ryan, K., Padrique, E., Alton, G., Timofeevski, S., Yamazaki, S., Li, Q., Zou, H., Christensen, J., Mroczkowski, B., Bender, S., Kania, R.S., Edwards, M.P., 2011. Structure Based Drug Design of Crizotinib (PF-02341066), a Potent and Selective Dual Inhibitor of Mesenchymal–Epithelial Transition Factor (c-MET) Kinase and Anaplastic Lymphoma Kinase (ALK). Journal of Medicinal Chemistry 54, 6342–6363. doi:10.1021/jm2007613
Daffis, S., Szretter, K.J., Schriewer, J., Li, J., Youn, S., Errett, J., Lin, T.-Y., Schneller, S., Zust, R., Dong, H., Thiel, V., Sen, G.C., Fensterl, V., Klimstra, W.B., Pierson, T.C., Buller, R.M., Jr, M.G., Shi, P.-Y., Diamond, M.S., 2010. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468, 452–456. doi:10.1038/nature09489
Dawicki-Mckenna, J.M., Langelier, M.-F., Denizio, J.E., Riccio, A.A., Cao, C.D., Karch, K.R., Mccauley, M., Steffen, J.D., Black, B.E., Pascal, J.M., 2015. PARP-1 Activation Requires Local Unfolding of an Autoinhibitory Domain. Molecular Cell 60, 755–768. doi:10.1016/j.molcel.2015.10.013
Degen, L., Matzinger, D., Merz, M., Appel-Dingemanse, S., Osborne, S., Lüchinger, S., Bertold, R., Maecke, H., Beglinger, C., 2001. Tegaserod, a 5-HT4 receptor partial agonist, accelerates gastric emptying and gastrointestinal transit in healthy male subjects. Alimentary Pharmacology & Therapeutics 15, 1745–1751. doi:10.1046/j.1365-2036.2001.01103.x
Eastman, P., Swails, J., Chodera, J.D., Mcgibbon, R.T., Zhao, Y., Beauchamp, K.A., Wang, L.-P., Simmonett, A.C., Harrigan, M.P., Stern, C.D., Wiewiora, R.P., Brooks, B.R., Pande, V.S., 2017. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Computational Biology 13. doi:10.1371/journal.pcbi.1005659
Eckhardt, M., Langkopf, E., Mark, M., Tadayyon, M., Thomas, L., Nar, H., Pfrengle, W., Guth, B., Lotz, R., Sieger, P., Fuchs, H., Himmelsbach, F., 2007. 8-(3-(R)-Aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a Highly Potent, Selective, Long-Acting, and Orally Bioavailable DPP-4 Inhibitor for the Treatment of Type 2 Diabetes†. Journal of Medicinal Chemistry 50, 6450–6453. doi:10.1021/jm701280z
Ekins, S., Mestres, J., Testa, B., 2007. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. British Journal of Pharmacology 152, 9–20. doi:10.1038/sj.bjp.0707305
Eyal, E., Lum, G., Bahar, I., 2015. The anisotropic network model web server at 2015 (ANM 2.0). Bioinformatics 31, 1487–1489. doi:10.1093/bioinformatics/btu847
Fanning, S.W., Mayne, C.G., Dharmarajan, V., Carlson, K.E., Martin, T.A., Novick, S.J., Toy, W., Green, B., Panchamukhi, S., Katzenellenbogen, B.S., Tajkhorshid, E., Griffin, P.R., Shen, Y., Chandarlapaty, S., Katzenellenbogen, J.A., Greene, G.L., 2016. Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. eLife 5. doi:10.7554/elife.12792
Forli, S., Huey, R., Pique, M.E., Sanner, M.F., Goodsell, D.S., Olson, A.J., 2016. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols 11, 905–919. doi:10.1038/nprot.2016.051
Friboulet, L., Li, N., Katayama, R., Lee, C.C., Gainor, J.F., Crystal, A.S., Michellys, P.-Y., Awad, M.M., Yanagitani, N., Kim, S., Pferdekamper, A.C., Li, J., Kasibhatla, S., Sun, F., Sun, X., Hua, S., Mcnamara, P., Mahmood, S., Lockerman, E.L., Fujita, N., Nishio, M., Harris, J.L., Shaw, A.T., Engelman, J.A., 2014. The ALK Inhibitor Ceritinib Overcomes Crizotinib Resistance in Non-Small Cell Lung Cancer. Cancer Discovery 4, 662–673. doi:10.1158/2159-8290.cd-13-0846
Genheden, S., Ryde, U., 2015. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery 10, 449–461. doi:10.1517/17460441.2015.1032936
Gilson, M.K., Zhou, H.-X., 2007. Calculation of Protein-Ligand Binding Affinities. Annual Review of Biophysics and Biomolecular Structure 36, 21–42. doi:10.1146/annurev.biophys.36.040306.132550
Gioia, D., Bertazzo, M., Recanatini, M., Masetti, M., Cavalli, A., 2017. Dynamic Docking: A Paradigm Shift in Computational Drug Discovery. Molecules 22, 2029. doi:10.3390/molecules22112029
Gowers, R., Linke, M., Barnoud, J., Reddy, T., Melo, M., Seyler, S., Domański, J., Dotson, D., Buchoux, S., Kenney, I., Beckstein, O., 2016. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference. doi:10.25080/majora-629e541a-00e
Graves, A.P., Brenk, R., Shoichet, B.K., 2006. Decoys for Docking. Journal of Medicinal Chemistry 48(11), 3714–3728. doi:10.1021/jm0491187.s001
Greenidge, P.A., Kramer, C., Mozziconacci, J.-C., Wolf, R.M., 2012. MM/GBSA Binding Energy Prediction on the PDBbind Data Set: Successes, Failures, and Directions for Further Improvement. Journal of Chemical Information and Modeling 53, 201–209. doi:10.1021/ci300425v
Grosdidier, A., Zoete, V., Michielin, O., 2011. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research 39. doi:10.1093/nar/gkr366
Guterres, H., Im, W., 2020. Improving Protein-Ligand Docking Results with High-Throughput Molecular Dynamics Simulations. Journal of Chemical Information and Modeling 60, 2189–2198. doi:10.1021/acs.jcim.0c00057
Haikarainen, T., Narwal, M., Joensuu, P., Lehtiö, L., 2013. Evaluation and Structural Basis for the Inhibition of Tankyrases by PARP Inhibitors. ACS Medicinal Chemistry Letters 5, 18–22. doi:10.1021/ml400292s
Hao, G.-F., Jiang, W., Ye, Y.-N., Wu, F.-X., Zhu, X.-L., Guo, F.-B., Yang, G.-F., 2016. ACFIS: a web server for fragment-based drug discovery. Nucleic Acids Research 44. doi:10.1093/nar/gkw393
Hsu, K.-C., Chen, Y.-F., Lin, S.-R., Yang, J.-M., 2011. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics 12. doi:10.1186/1471-2105-12-s1-s33
Huang, D., Caflisch, A., 2011. Small Molecule Binding to Proteins: Affinity and Binding/Unbinding Dynamics from Atomistic Simulations. ChemMedChem 6, 1578–1580. doi:10.1002/cmdc.201100237
Huey, R., Morris, G.M., Olson, A.J., Goodsell, D.S., 2007. A semiempirical free energy force field with charge-based desolvation. Journal of Computational Chemistry 28, 1145–1152. doi:10.1002/jcc.20634
Hughes, J., Rees, S., Kalindjian, S., Philpott, K., 2011. Principles of early drug discovery. British Journal of Pharmacology 162, 1239–1249. doi:10.1111/j.1476-5381.2010.01127.x
Jakalian, A., Jack, D.B., Bayly, C.I., 2002. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry 23, 1623–1641. doi:10.1002/jcc.10128
Jin, G., Wong, S.T., 2014. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discovery Today 19, 637–644. doi:10.1016/j.drudis.2013.11.005
Karoulia, Z., Wu, Y., Ahmed, T.A., Xin, Q., Bollard, J., Krepler, C., Wu, X., Zhang, C., Bollag, G., Herlyn, M., Fagin, J.A., Lujambio, A., Gavathiotis, E., Poulikakos, P.I., 2016. An Integrated Model of RAF Inhibitor Action Predicts Inhibitor Activity against Oncogenic BRAF Signaling. Cancer Cell 30, 485–498. doi:10.1016/j.ccell.2016.06.024
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B.A., Thiessen, P.A., Yu, B., Zaslavsky, L., Zhang, J., Bolton, E.E., 2018. PubChem 2019 update: improved access to chemical data. Nucleic Acids Research 47. doi:10.1093/nar/gky1033
Koes, D.R., Baumgartner, M.P., Camacho, C.J., 2013. Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise. Journal of Chemical Information and Modeling 53, 1893–1904. doi:10.1021/ci300604z
Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D.A., Cheatham, T.E., 2000. Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Accounts of Chemical Research 33, 889–897. doi:10.1021/ar000033j
Kontoyianni M., 2017. Chapter 18 - Docking and Virtual Screening in Drug Discovery. In: Lazar I., Kontoyianni M., Lazar A. (eds) Proteomics for Drug Discovery. Methods in Molecular Biology, vol 1647. Humana Press, New York, NY
Korb, O., Stützle, T., Exner, T.E., 2007. An ant colony optimization approach to flexible protein–ligand docking. Swarm Intelligence 1, 115–134. doi:10.1007/s11721-007-0006-9
Korb, O., Stützle Thomas, Exner, T.E., 2009. Empirical Scoring Functions for Advanced Protein−Ligand Docking with PLANTS. Journal of Chemical Information and Modeling 49, 84–96. doi:10.1021/ci800298z
Krafcikova, P., Silhan, J., Nencka, R., Boura, E., 2020. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nature Communications 11. doi:10.1038/s41467-020-17495-9
Lee, J.Y., Krieger, J.M., Li, H., Bahar, I., 2019. Pharmmaker: Pharmacophore modeling and hit identification based on druggability simulations. Protein Science 29, 76–86. doi:10.1002/pro.3732
Levinson, N.M., Boxer, S.G., 2013. A conserved water-mediated hydrogen bond network defines bosutinib's kinase selectivity. Nature Chemical Biology 10, 127–132. doi:10.1038/nchembio.1404
Li, H., Chang, Y.-Y., Lee, J.Y., Bahar, I., Yang, L.-W., 2017. DynOmics: dynamics of structural proteome and beyond. Nucleic Acids Research 45. doi:10.1093/nar/gkx385
Li, H., Sakuraba, S., Chandrasekaran, A., Yang, L.-W., 2014. Molecular Binding Sites Are Located Near the Interface of Intrinsic Dynamics Domains (IDDs). Journal of Chemical Information and Modeling 54, 2275–2285. doi:10.1021/ci500261z
Liu, K., Kokubo, H., 2017. Exploring the Stability of Ligand Binding Modes to Proteins by Molecular Dynamics Simulations: A Cross-docking Study. Journal of Chemical Information and Modeling 57, 2514–2522. doi:10.1021/acs.jcim.7b00412Liu, P.-F., Tsai, K.-L., Hsu, C.-J., Tsai, W.-L., Cheng, J.-S., Chang, H.-W., Shiau, C.-W., Goan, Y.-G., Tseng, H.-H., Wu, C.-H., Reed, J.C., Yang, L.-W., Shu, C.-W., 2018. Drug Repurposing Screening Identifies Tioconazole as an ATG4 Inhibitor that Suppresses Autophagy and Sensitizes Cancer Cells to Chemotherapy. Theranostics 8, 830–845. doi:10.7150/thno.22012
Lu, H., Schulze-Gahmen, U., 2006. Toward Understanding the Structural Basis of Cyclin-Dependent Kinase 6 Specific Inhibition. Journal of Medicinal Chemistry 49, 3826–3831. doi:10.1021/jm0600388
Ma, D.-L., Chan, D.S.-H., Leung, C.-H., 2011. Molecular docking for virtual screening of natural product databases. Chem. Sci. 2, 1656–1665. doi:10.1039/c1sc00152c
Maier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E., Simmerling, C., 2015. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Journal of Chemical Theory and Computation 11, 3696–3713. doi:10.1021/acs.jctc.5b00255
March-Vila, E., Pinzi, L., Sturm, N., Tinivella, A., Engkvist, O., Chen, H., Rastelli, G., 2017. On the Integration of In Silico Drug Design Methods for Drug Repurposing. Frontiers in Pharmacology 8. doi:10.3389/fphar.2017.00298
Massova, I., Kollman, P.A., 2000. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design 18, 113–135. doi:10.1023/A:1008763014207
Mctigue, M., Murray, B.W., Chen, J.H., Deng, Y.-L., Solowiej, J., Kania, R.S., 2012. Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proceedings of the National Academy of Sciences 109, 18281–18289. doi:10.1073/pnas.1207759109
Michaud-Agrawal, N., Denning, E.J., Woolf, T.B., Beckstein, O., 2011. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry 32, 2319–2327. doi:10.1002/jcc.21787
Miglianico, M., Eldering, M., Slater, H., Ferguson, N., Ambrose, P., Lees, R.S., Koolen, K.M.J., Pruzinova, K., Jancarova, M., Volf, P., Koenraadt, C.J.M., Duerr, H.-P., Trevitt, G., Yang, B., Chatterjee, A.K., Wisler, J., Sturm, A., Bousema, T., Sauerwein, R.W., Schultz, P.G., Tremblay, M.S., Dechering, K.J., 2018. Repurposing isoxazoline veterinary drugs for control of vector-borne human diseases. Proceedings of the National Academy of Sciences 115. doi:10.1073/pnas.1801338115
Miller, B.R., Mcgee, T.D., Swails, J.M., Homeyer, N., Gohlke, H., Roitberg, A.E., 2012. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation 8, 3314–3321. doi:10.1021/ct300418h
Miyamoto, S., Kollman, P.A., 1992. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry 13, 952–962. doi:10.1002/jcc.540130805
Mohs, R.C., Greig, N.H., 2017. Drug discovery and development: Role of basic biological research. Alzheimers Dementia: Translational Research Clinical Interventions 3, 651–657. doi:10.1016/j.trci.2017.10.005
Mollica, L., Decherchi, S., Zia, S.R., Gaspari, R., Cavalli, A., Rocchia, W., 2015. Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations. Scientific Reports 5. doi:10.1038/srep11539
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30:2785-91.
Murgueitio, M.S., Bermudez, M., Mortier, J., Wolber, G., 2012. In silico virtual screening approaches for anti-viral drug discovery. Drug Discovery Today: Technologies 9. doi:10.1016/j.ddtec.2012.07.009
Nguyen, H., Roe, D.R., Swails, J., Case, D.A., 2015. pytraj (https://github.com/Amber-MD/pytraj)
Okamoto, K., Ikemori-Kawada, M., Jestel, A., König, K.V., Funahashi, Y., Matsushima, T., Tsuruoka, A., Inoue, A., Matsui, J., 2014. Distinct Binding Mode of Multikinase Inhibitor Lenvatinib Revealed by Biochemical Characterization. ACS Medicinal Chemistry Letters 6, 89–94. doi:10.1021/ml500394m
Oliveira EAM, Lang KL., 2018. Drug Repositioning: Concept, Classification, Methodology, and Importance in Rare/Orphans and Neglected Diseases. Journal of Applied Pharmaceutical Science 157–165. doi:10.7324/japs.2018.8822
Olsson, M.H.M., Søndergaard, C.R., Rostkowski, M., Jensen, J.H., 2011. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. Journal of Chemical Theory and Computation 7, 525–537. doi:10.1021/ct100578z
Pantsar, T., Poso, A., 2018. Binding Affinity via Docking: Fact and Fiction. Molecules 23, 1899. doi:10.3390/molecules23081899
Okamoto, K., Ikemori-Kawada, M., Jestel, A., König, K.V., Funahashi, Y., Matsushima, T., Tsuruoka, A., Inoue, A., Matsui, J., 2014. Distinct Binding Mode of Multikinase Inhibitor Lenvatinib Revealed by Biochemical Characterization. ACS Medicinal Chemistry Letters 6, 89–94. doi:10.1021/ml500394m
Pantsar, T., Poso, A., 2018. Binding Affinity via Docking: Fact and Fiction. Molecules 23, 1899. doi:10.3390/molecules23081899
Park, K., 2019. A review of computational drug repurposing. Translational and Clinical Pharmacology 27, 59. doi:10.12793/tcp.2019.27.2.59
Paul, S.M., Mytelka, D.S., Dunwiddie, C.T., Persinger, C.C., Munos, B.H., Lindborg, S.R., Schacht, A.L., 2010. How to improve R&D productivity: the pharmaceutical industrys grand challenge. Nature Reviews Drug Discovery 9, 203–214. doi:10.1038/nrd3078
Pearce, D.J., 2005. An Improved Algorithm for Finding the Strongly Connected Components of a Directed Graph.
Pinto, D.J.P., Orwat, M.J., Koch, S., Rossi, K.A., Alexander, R.S., Smallwood, A., Wong, P.C., Rendina, A.R., Luettgen, J.M., Knabb, R.M., He, K., Xin, B., Wexler, R.R., Lam, P.Y.S., 2007. Discovery of 1-(4-Methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro- 1H-pyrazolo[3,4-c]pyridine-3-carboxamide (Apixaban, BMS-562247), a Highly Potent, Selective, Efficacious, and Orally Bioavailable Inhibitor of Blood Coagulation Factor Xa. Journal of Medicinal Chemistry 50, 5339–5356. doi:10.1021/jm070245n
Pratt, J.W., 2012. CHAPTER 7 Kolmogorov-Smirnov Two-Sample Tests, in: Concepts of Nonparametric Theory. Springer.
Pulley, J.M., Rhoads, J.P., Jerome, R.N., Challa, A.P., Erreger, K.B., Joly, M.M., Lavieri, R.R., Perry, K.E., Zaleski, N.M., Shirey-Rice, J.K., Aronoff, D.M., 2020. Using What We Already Have: Uncovering New Drug Repurposing Strategies in Existing Omics Data. Annual Review of Pharmacology and Toxicology 60, 333–352. doi:10.1146/annurev-pharmtox-010919-023537
Pushpakom, S., Iorio, F., Eyers, P.A., Escott, K.J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., Mcnamee, C., Norris, A., Sanseau, P., Cavalla, D., Pirmohamed, M., 2018. Drug repurposing: progress, challenges and recommendations. Nature Reviews Drug Discovery 18, 41–58. doi:10.1038/nrd.2018.168
Roe, D.R., Cheatham, T.E., 2013. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. Journal of Chemical Theory and Computation 9, 3084–3095. doi:10.1021/ct400341p
Roehrig, S., Straub, A., Pohlmann, J., Lampe, T., Pernerstorfer, J., Schlemmer, K.-H., Reinemer, P., Perzborn, E., 2005. Discovery of the Novel Antithrombotic Agent 5-Chloro-N-({(5S)-2-oxo-3- [4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl}methyl)thiophene- 2-carboxamide (BAY 59-7939):  An Oral, Direct Factor Xa Inhibitor. Journal of Medicinal Chemistry 48, 5900–5908. doi:10.1021/jm050101d
Rose, A.S., Bradley, A.R., Valasatava, Y., Duarte, J.M., Prlić, A., Rose, P.W., 2018. NGL viewer: web-based molecular graphics for large complexes. Bioinformatics 34, 3755–3758. doi:10.1093/bioinformatics/bty419
Pratt, J.W., 2012. CHAPTER 7 Kolmogorov-Smirnov Two-Sample Tests, in: Concepts of Nonparametric Theory. Springer.
Salmaso, V., Moro, S., 2018. Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview. Frontiers in Pharmacology 9. doi:10.3389/fphar.2018.00923
Santos, L.H., Ferreira, R.S., Caffarena, E.R., 2019. Integrating Molecular Docking and Molecular Dynamics Simulations. Methods in Molecular Biology 13–34. doi:10.1007/978-1-4939-9752-7_2
Santos, R., Ursu, O., Gaulton, A., Bento, A.P., Donadi, R.S., Bologa, C.G., Karlsson, A., Al-Lazikani, B., Hersey, A., Oprea, T.I., Overington, J.P., 2017. A comprehensive map of molecular drug targets. Nature Reviews Drug Discovery 16, 19–34. doi:10.1038/nrd.2016.230
Singh, N., Chaput, L., Villoutreix, B.O., 2020. Virtual screening web servers: designing chemical probes and drug candidates in the cyberspace. Briefings in Bioinformatics. doi:10.1093/bib/bbaa034
Sokal, R.R., Michener, C.D., 1958. A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin 38, 1409–1438.
Søndergaard, C.R., Olsson, M.H.M., Rostkowski, M., Jensen, J.H., 2011. Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. Journal of Chemical Theory and Computation 7, 2284–2295. doi:10.1021/ct200133y
Stein, E.M., Dinardo, C.D., Pollyea, D.A., Fathi, A.T., Roboz, G.J., Altman, J.K., Stone, R.M., Deangelo, D.J., Levine, R.L., Flinn, I.W., Kantarjian, H.M., Collins, R., Patel, M.R., Frankel, A.E., Stein, A., Sekeres, M.A., Swords, R.T., Medeiros, B.C., Willekens, C., Vyas, P., Tosolini, A., Xu, Q., Knight, R.D., Yen, K.E., Agresta, S., Botton, S.D., Tallman, M.S., 2017. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130, 722–731. doi:10.1182/blood-2017-04-779405
Sun, H., Li, Y., Tian, S., Xu, L., Hou, T., 2014. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys. Chem. Chem. Phys. 16, 16719–16729. doi:10.1039/c4cp01388c
Takemura, K., Burri, R.R., Ishikawa, T., Ishikura, T., Sakuraba, S., Matubayasi, N., Kuwata, K., Kitao, A., 2013. Free-energy analysis of lysozyme–triNAG binding modes with all-atom molecular dynamics simulation combined with the solution theory in the energy representation. Chemical Physics Letters 559, 94–98. doi:10.1016/j.cplett.2012.12.063
Terzyan, S.S., Shen, T., Liu, X., Huang, Q., Teng, P., Zhou, M., Hilberg, F., Cai, J., Mooers, B.H.M., Wu, J., 2019. Structural basis of resistance of mutant RET protein-tyrosine kinase to its inhibitors nintedanib and vandetanib. Journal of Biological Chemistry 294, 10428–10437. doi:10.1074/jbc.ra119.007682
Thorsell, A.-G., Ekblad, T., Karlberg, T., Löw, M., Pinto, A.F., Trésaugues, L., Moche, M., Cohen, M.S., Schüler, H., 2016. Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors. Journal of Medicinal Chemistry 60, 1262–1271. doi:10.1021/acs.jmedchem.6b00990
Trott, O., Olson, A.J., 2009. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. doi:10.1002/jcc.21334
Tsai, T.-Y., Chang, K.-W., Chen, C.Y.-C., 2011. iScreen: world’s first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan. Journal of Computer-Aided Molecular Design 25, 525–531. doi:10.1007/s10822-011-9438-9
Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S.J.V.D., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, I., Feng, Y., Moore, E.W., Vanderplas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., Mulbregt, P.V., 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17, 261–272. doi:10.1038/s41592-019-0686-2
Viswanathan, T., Arya, S., Chan, S.-H., Qi, S., Dai, N., Misra, A., Park, J.-G., Oladunni, F., Kovalskyy, D., Hromas, R.A., Martinez-Sobrido, L., Gupta, Y.K., 2020. Structural basis of RNA cap modification by SARS-CoV-2. Nature Communications 11. doi:10.1038/s41467-020-17496-8
Vohora, D., Singh, G., 2018. Chapter 2 - Drug Discovery and Development: An Overview, in: Pharmaceutical Medicine and Translational Clinical Research. Academic Press.
Waizenegger, I.C., Baum, A., Steurer, S., Stadtmu Ller, H., Bader, G., Schaaf, O., Garin-Chesa, P., Schlattl, A., Schweifer, N., Haslinger, C., Colbatzky, F., Mousa, S., Kalkuhl, A., Kraut, N., Adolf, G.R., 2016. A Novel RAF Kinase Inhibitor with DFG-Out-Binding Mode: High Efficacy in BRAF-Mutant Tumor Xenograft Models in the Absence of Normal Tissue Hyperproliferation. Molecular Cancer Therapeutics 15, 354–365. doi:10.1158/1535-7163.mct-15-0617
Wang, F., Wu, F.-X., Li, C.-Z., Jia, C.-Y., Su, S.-W., Hao, G.-F., Yang, G.-F., 2019. ACID: a free tool for drug repurposing using consensus inverse docking strategy. Journal of Cheminformatics 11. doi:10.1186/s13321-019-0394-z
Wang, J.-C., Chu, P.-Y., Chen, C.-M., Lin, J.-H., 2012. idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Research 40. doi:10.1093/nar/gks496
Wang, J.-C., Lin, J.-H., Chen, C.-M., Perryman, A.L., Olson, A.J., 2011. Robust Scoring Functions for Protein–Ligand Interactions with Quantum Chemical Charge Models. Journal of Chemical Information and Modeling 51, 2528–2537. doi:10.1021/ci200220v
Wang, J., Wang, W., Kollman, P.A., Case, D.A., 2006. Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling 25, 247–260. doi:10.1016/j.jmgm.2005.12.005
Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., 2004. Development and testing of a general amber force field. Journal of Computational Chemistry 25, 1157–1174. doi:10.1002/jcc.20035
Wang, R., Lai, L., Wang, S., 2002. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. Journal of Computer-Aided Molecular Design 16, 11–26. doi:10.1023/a:1016357811882
Wang, Y., Sun, Y., Wu, A., Xu, S., Pan, R., Zeng, C., Jin, X., Ge, X., Shi, Z., Ahola, T., Chen, Y., Guo, D., 2015. Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived PeptideIn VitroandIn VivoTo Reduce Replication and Pathogenesis. Journal of Virology 89, 8416–8427. doi:10.1128/jvi.00948-15
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., Schwede, T., 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research 46. doi:10.1093/nar/gky427
Weisstein, E.W. "Triangle Point Picking." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/TrianglePointPicking.html
Westbrook, J.D., Burley, S.K., 2019. How Structural Biologists and the Protein Data Bank Contributed to Recent FDA New Drug Approvals. Structure 27, 211–217. doi:10.1016/j.str.2018.11.007
Word, J., Lovell, S.C., Richardson, J.S., Richardson, D.C., 1999. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation 1 1Edited by J. Thornton. Journal of Molecular Biology 285, 1735–1747. doi:10.1006/jmbi.1998.2401
Yang, L.-W., Eyal, E., Bahar, I., Kitao, A., 2009. Principal component analysis of native ensembles of biomolecular structures (PCA_NEST): insights into functional dynamics. Bioinformatics 25, 606–614. doi:10.1093/bioinformatics/btp023
Yang, L.-W., Kitao, A., Huang, B.-C., Gō, N., 2014. Ligand-Induced Protein Responses and Mechanical Signal Propagation Described by Linear Response Theories. Biophysical Journal 107, 1415–1425. doi:10.1016/j.bpj.2014.07.049
Yang, L.-W., Liu, X., Jursa, C.J., Holliman, M., Rader, A., Karimi, H.A., Bahar, I., 2005. iGNM: a database of protein functional motions based on Gaussian Network Model. Bioinformatics 21, 2978–2987. doi:10.1093/bioinformatics/bti469
Yang, L.-W., Rader, A.J., Liu, X., Jursa, C.J., Chen, S.C., Karimi, H.A., Bahar, I., 2006. o GNM: online computation of structural dynamics using the Gaussian Network Model. Nucleic Acids Research 34. doi:10.1093/nar/gkl084
Yang, T., Wu, J.C., Yan, C., Wang, Y., Luo, R., Gonzales, M.B., Dalby, K.N., Ren, P., 2011. Virtual screening using molecular simulations. Proteins: Structure, Function, and Bioinformatics 79, 1940–1951. doi:10.1002/prot.23018
Yosaatmadja, Y., Silva, S., Dickson, J.M., Patterson, A.V., Smaill, J.B., Flanagan, J.U., Mckeage, M.J., Squire, C.J., 2015. Binding mode of the breakthrough inhibitor AZD9291 to epidermal growth factor receptor revealed. Journal of Structural Biology 192, 539–544. doi:10.1016/j.jsb.2015.10.018
Zhang, X., Perez-Sanchez, H., C. Lightstone, F., 2017. A Comprehensive Docking and MM/GBSA Rescoring Study of Ligand Recognition upon Binding Antithrombin. Current Topics in Medicinal Chemistry 17, 1631–1639. doi:10.2174/1568026616666161117112604
Zhang, Y., Doruker, P., Kaynak, B., Zhang, S., Krieger, J., Li, H., Bahar, I., 2020. Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior. Current Opinion in Structural Biology 62, 14–21. doi:10.1016/j.sbi.2019.11.002
Zhang, Z., Wallace, M.B., Feng, J., Stafford, J.A., Skene, R.J., Shi, L., Lee, B., Aertgeerts, K., Jennings, A., Xu, R., Kassel, D.B., Kaldor, S.W., Navre, M., Webb, D.R., Gwaltney, S.L., 2011. Design and Synthesis of Pyrimidinone and Pyrimidinedione Inhibitors of Dipeptidyl Peptidase IV. Journal of Medicinal Chemistry 54, 510–524. doi:10.1021/jm101016w

Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr. 2007;27:19-40
Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F. et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015;34:856-80
Jiang P, Mizushima N. Autophagy and human diseases. Cell Res. 2014;24:69-79
Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem. 2010;285:11061-7
Abedin MJ, Wang D, McDonnell MA, Lehmann U, Kelekar A. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ. 2007;14:500-10
Levy JM, Thompson JC, Griesinger AM, Amani V, Donson AM, Birks DK. et al. Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors. Cancer Discov. 2014;4:773-80
Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald KA. et al. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol. 2012;13:255-63
Yang ZJ, Chee CE, Huang S, Sinicrope F. Autophagy modulation for cancer therapy. Cancer Biol Ther. 2011;11:169-76
Solitro AR, MacKeigan JP. Leaving the lysosome behind: novel developments in autophagy inhibition. Future Med Chem. 2016;8:73-86
Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ, Thorburn A. Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy. 2012;8:200-12
Maes H, Kuchnio A, Peric A, Moens S, Nys K, De Bock K. et al. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell. 2014;26:190-206
Klionsky DJ. Citing recent declines in the discovery of new ATG genes, some scientists now suggest that the end of autophagy research may be within sight. Autophagy. 2014;10:715-6
Nakatogawa H, Ishii J, Asai E, Ohsumi Y. Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy. 2012;8:177-86
Yu ZQ, Ni T, Hong B, Wang HY, Jiang FJ, Zou S. et al. Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy. 2012;8:883-92
Marino G, Uria JA, Puente XS, Quesada V, Bordallo J, Lopez-Otin C. Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J Biol Chem. 2003;278:3671-8
Schaaf MB, Keulers TG, Vooijs MA, Rouschop KM. LC3/GABARAP family proteins: autophagy-(un)related functions. FASEB J. 2016;30:3961-78
Li M, Hou Y, Wang J, Chen X, Shao ZM, Yin XM. Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates. J Biol Chem. 2011;286:7327-38
Shu CW, Drag M, Bekes M, Zhai D, Salvesen GS, Reed JC. Synthetic substrates for measuring activity of autophagy proteases: autophagins (Atg4). Autophagy. 2010;6:936-47
Betin VM, Lane JD. Atg4D at the interface between autophagy and apoptosis. Autophagy. 2009;5:1057-9

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455-61
Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10:449-61
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS. et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785-91
Shu CW, Madiraju C, Zhai D, Welsh K, Diaz P, Sergienko E. et al. High-throughput fluorescence assay for small-molecule inhibitors of autophagins/Atg4. J Biomol Screen. 2011;16:174-82
Hayashi H, Cuddy M, Shu VC, Yip KW, Madiraju C, Diaz P. et al. Versatile assays for high throughput screening for activators or inhibitors of intracellular proteases and their cellular regulators. PLoS One. 2009;4:e7655
Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140:313-26
Chang CE, Chen W, Gilson MK. Ligand configurational entropy and protein binding. Proc Natl Acad Sci U S A. 2007;104:1534-9
Tsui V, Case DA. Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers. 2000;56:275-91
Akin D, Wang SK, Habibzadegah-Tari P, Law B, Ostrov D, Li M. et al. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Autophagy. 2014;10:2021-35
Bortnik S, Choutka C, Horlings HM, Leung S, Baker JH, Lebovitz C. et al. Identification of breast cancer cell subtypes sensitive to ATG4B inhibition. Oncotarget. 2016;7:66970-88
Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T. et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell. 2008;19:4651-9
Betin VM, Singleton BK, Parsons SF, Anstee DJ, Lane JD. Autophagy facilitates organelle clearance during differentiation of human erythroblasts: evidence for a role for ATG4 paralogs during autophagosome maturation. Autophagy. 2013;9:881-93
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12:1-222
Egan DF, Chun MG, Vamos M, Zou H, Rong J, Miller CJ. et al. Small Molecule Inhibition of the Autophagy Kinase ULK1 and Identification of ULK1 Substrates. Mol Cell. 2015;59:285-97
Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 2015;11:9-15
Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T. et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature. 2009;461:654-8
Liu PF, Leung CM, Chang YH, Cheng JS, Chen JJ, Weng CJ. et al. ATG4B promotes colorectal cancer growth independent of autophagic flux. Autophagy. 2014;10:1454-65
Rothe K, Lin H, Lin KB, Leung A, Wang HM, Malekesmaeili M. et al. The core autophagy protein ATG4B is a potential biomarker and therapeutic target in CML stem/progenitor cells. Blood. 2014;123:3622-34
Marino G, Fernandez AF, Cabrera S, Lundberg YW, Cabanillas R, Rodriguez F. et al. Autophagy is essential for mouse sense of balance. J Clin Invest. 2010;120:2331-44
Zhang W, Ramamoorthy Y, Kilicarslan T, Nolte H, Tyndale RF, Sellers EM. Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab Dispos. 2002;30:314-8
Chen S, Jiang YZ, Huang L, Zhou RJ, Yu KD, Liu Y. et al. The residual tumor autophagy marker LC3B serves as a prognostic marker in local advanced breast cancer after neoadjuvant chemotherapy. Clin Cancer Res. 2013;19:6853-62
Lazova R, Camp RL, Klump V, Siddiqui SF, Amaravadi RK, Pawelek JM. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin Cancer Res. 2012;18:370-9
Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011;25:717-29
Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L, Fassy F. et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol. 2014;10:1013-9
Jevons S, Gymer GE, Brammer KW, Cox DA, Leeming MR. Antifungal activity of tioconazole (UK-20,349), a new imidazole derivative. Antimicrob Agents Chemother. 1979;15:597-602
Satoo K, Noda NN, Kumeta H, Fujioka Y, Mizushima N, Ohsumi Y. et al. The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J. 2009;28:1341-50
Sugawara K, Suzuki NN, Fujioka Y, et al. Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J Biol Chem. 2005; 280:40058-65.
Satoo K, Noda NN, Kumeta H, et al. The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J. 2009; 28:1341-50.
Maier JA, Martinez C, Kasavajhala K, et al. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput. 2015; 11:3696-713.
Puranen JS, Vainio MJ, Johnson MS. Accurate conformation-dependent molecular electrostatic potentials for high-throughput in silico drug discovery. J Comput Chem. 2010; 31:1722-32.
Vainio MJ, Johnson MS. Generating conformer ensembles using a multiobjective genetic algorithm. J Chem Inf Model. 2007; 47:2462-74.
Kim S, Thiessen PA, Bolton EE, et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016; 44:D1202-13.
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31:455-61.
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30:2785-91.
Wang JC, Lin JH, Chen CM, et al. Robust scoring functions for protein-ligand interactions with quantum chemical charge models. J Chem Inf Model. 2011; 51:2528-37.
Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem. 2002; 23:1623-41.
Wang J, Wolf RM, Caldwell JW, et al. Development and testing of a general amber force field. J Comput Chem. 2004; 25:1157-74.
Wang J, Wang W, Kollman PA, et al. Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model. 2006; 25:247-60.
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996; 14:33-8, 27-8.
Roe DR, Cheatham TE, 3rd. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput. 2013; 9:3084-95.

Agrotis, Ketteler, 2019. On ATG4B as Drug Target for Treatment of Solid Tumours—The Knowns and the Unknowns. Cells 9, 53. doi:10.3390/cells9010053
Akin, D., Wang, S.K., Habibzadegah-Tari, P., Law, B., Ostrov, D., Li, M., Yin, X.-M., Kim, J.-S., Horenstein, N., Dunn, W.A., 2014. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Autophagy 10, 2021–2035. doi:10.4161/auto.32229
Atilgan, A., Durell, S., Jernigan, R., Demirel, M., Keskin, O., Bahar, I., 2001. Anisotropy of Fluctuation Dynamics of Proteins with an Elastic Network Model. Biophysical Journal 80, 505–515. doi:10.1016/s0006-3495(01)76033-x
Bento, C.F., Renna, M., Ghislat, G., Puri, C., Ashkenazi, A., Vicinanza, M., Menzies, F.M., Rubinsztein, D.C., 2016. Mammalian Autophagy: How Does It Work? Annual Review of Biochemistry 85, 685–713. doi:10.1146/annurev-biochem-060815-014556
Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T.G., Bertoni, M., Bordoli, L., Schwede, T., 2014. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research 42. doi:10.1093/nar/gku340
Birgisdottir, Å.B., Lamark, T., Johansen, T., 2013. The LIR motif - crucial for selective autophagy. Journal of Cell Science 126, 3237–3247. doi:10.1242/jcs.126128
Bortnik, S., Choutka, C., Horlings, H.M., Leung, S., Baker, J.H., Lebovitz, C., Dragowska, W.H., Go, N.E., Bally, M.B., Minchinton, A.I., Gelmon, K.A., Gorski, S.M., 2016. Identification of breast cancer cell subtypes sensitive to ATG4B inhibition. Oncotarget 7. doi:10.18632/oncotarget.11408
Bosc, D., Vezenkov, L., Bortnik, S., An, J., Xu, J., Choutka, C., Hannigan, A.M., Kovacic, S., Loo, S., Clark, P.G.K., Chen, G., Guay-Ross, R.N., Yang, K., Dragowska, W.H., Zhang, F., Go, N.E., Leung, A., Honson, N.S., Pfeifer, T.A., Gleave, M., Bally, M., Jones, S.J., Gorski, S.M., Young, R.N., 2018. A new quinoline-based chemical probe inhibits the autophagy-related cysteine protease ATG4B. Scientific Reports 8. doi:10.1038/s41598-018-29900-x
Boya, P., Reggiori, F., Codogno, P., 2013. Erratum: Emerging regulation and functions of autophagy. Nature Cell Biology 15, 1017–1017. doi:10.1038/ncb2815
Case D.A., Ben-Shalom I.Y., Brozell S.R., Cerutti D.S., Cheatham T.E., III, Cruzeiro V.W.D., Darden T.A., Duke R.E., Ghoreishi D., Gilson M.K., Gohlke H., Goetz A.W., Greene D., Harris R., Homeyer N., Izadi S., Kovalenko A., Kurtzman T., Lee T.S., LeGrand S., Li P., Lin C., Liu J., Luchko T., Luo R., Mermelstein D.J., Merz K.M., Miao Y., Monard G., Nguyen C., Nguyen H., Omelyan I., Onufriev A., Pan F., Qi R., Roe D.R., Roitberg A., Sagui C., Schott-Verdugo S., Shen J., Simmerling C.L., Smith J., Salomon-Ferrer R., Swails J., Walker R.C., Wang J., Wei H., Wolf R.M., Wu X., Xiao L., York D.M., Kollman P.A., 2018. AMBER 2018, University of California, San Francisco.
Chakraborty, S., Venkatramani, R., Rao, B.J., Asgeirsson, B., Dandekar, A.M., 2013. Protein structure quality assessment based on the distance profiles of consecutive backbone Cα atoms. F1000Research 2, 211. doi:10.12688/f1000research.2-211.v3
Chang CE, Chen W, Gilson MK. Ligand configurational entropy and protein binding. Proc Natl Acad Sci U S A. 2007;104:1534-9
Chang, H.-W., Liu, P.-F., Tsai, W.-L., Hu, W.-H., Hu, Y.-C., Yang, H.-C., Lin, W.-Y., Weng, J.-R., Shu, C.-W., 2019. Xanthium strumarium Fruit Extract Inhibits ATG4B and Diminishes the Proliferation and Metastatic Characteristics of Colorectal Cancer Cells. Toxins 11, 313. doi:10.3390/toxins11060313
Chen, Y., Klionsky, D.J., 2010. The regulation of autophagy - unanswered questions. Journal of Cell Science 124, 161–170. doi:10.1242/jcs.064576
Choi, A.M., Ryter, S.W., Levine, B., 2013. Autophagy in Human Health and Disease. New England Journal of Medicine 368, 651–662. doi:10.1056/nejmra1205406
Cleenewerck, M., Grootaert, M.O., Gladysz, R., Adriaenssens, Y., Roelandt, R., Joossens, J., Lambeir, A.-M., Meyer, G.R.D., Declercq, W., Augustyns, K., Martinet, W., Veken, P.V.D., 2016. Inhibitor screening and enzymatic activity determination for autophagy target Atg4B using a gel electrophoresis-based assay. European Journal of Medicinal Chemistry 123, 631–638. doi:10.1016/j.ejmech.2016.07.073
Das, C.K., Banerjee, I., Mandal, M., 2019. Pro-survival autophagy: An emerging candidate of tumor progression through maintaining hallmarks of cancer. Seminars in Cancer Biology. doi:10.1016/j.semcancer.2019.08.020
DeLano WL, 2002. The PyMOL molecular graphics system. http://www.pymol.org
Deretic, V., Saitoh, T., Akira, S., 2013. Autophagy in infection, inflammation and immunity. Nature Reviews Immunology 13, 722–737. doi:10.1038/nri3532
Endo, S., Uchibori, M., Suyama, M., Fujita, M., Arai, Y., Hu, D., Xia, S., Ma, B., Kabir, A., Kamatari, Y.O., Kuwata, K., Toyooka, N., Matsunaga, T., Ikari, A., 2019. Novel Atg4B inhibitors potentiate cisplatin therapy in lung cancer cells through blockade of autophagy. Computational Toxicology 12, 100095. doi:10.1016/j.comtox.2019.100095
Eyal, E., Lum, G., Bahar, I., 2015. The anisotropic network model web server at 2015 (ANM 2.0). Bioinformatics 31, 1487–1489. doi:10.1093/bioinformatics/btu847
Faller, B.A., Pandit, T.N., 2011. Safety and Efficacy of Vinorelbine in the Treatment of Non-Small Cell Lung Cancer. Clinical Medicine Insights: Oncology 5. doi:10.4137/cmo.s5074
Feng, Y., He, D., Yao, Z., Klionsky, D.J., 2013. The machinery of macroautophagy. Cell Research 24, 24–41. doi:10.1038/cr.2013.168
Fernández, Á.F., López-Otín, C., 2015. The functional and pathologic relevance of autophagy proteases. Journal of Clinical Investigation 125, 33–41. doi:10.1172/jci73940
Filomeni, G., Zio, D.D., Cecconi, F., 2014. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death & Differentiation 22, 377–388. doi:10.1038/cdd.2014.150
Fu, Y., Hong, L., Xu, J., Zhong, G., Gu, Q., Gu, Q., Guan, Y., Zheng, X., Dai, Q., Luo, X., Liu, C., Huang, Z., Yin, X.-M., Liu, P., Li, M., 2018. Discovery of a small molecule targeting autophagy via ATG4B inhibition and cell death of colorectal cancer cells in vitro and in vivo. Autophagy 15, 295–311. doi:10.1080/15548627.2018.1517073
Fu, Y., Huang, Z., Hong, L., Lu, J.-H., Feng, D., Yin, X.-M., Li, M., 2019. Targeting ATG4 in Cancer Therapy. Cancers 11, 649. doi:10.3390/cancers11050649
Galluzzi, L., Pietrocola, F., Levine, B., Kroemer, G., 2014. Metabolic Control of Autophagy. Cell 159, 1263–1276. doi:10.1016/j.cell.2014.11.006
Galluzzi, L., Pietrocola, F., Pedro, J.M.B.S., Amaravadi, R.K., Baehrecke, E.H., Cecconi, F., Codogno, P., Debnath, J., Gewirtz, D.A., Karantza, V., Kimmelman, A., Kumar, S., Levine, B., Maiuri, M.C., Martin, S.J., Penninger, J., Piacentini, M., Rubinsztein, D.C., Simon, H.U., Simonsen, A., Thorburn, A.M., Velasco, G., Ryan, K.M., Kroemer, G., 2015. Autophagy in malignant transformation and cancer progression. The EMBO Journal 34, 856–880. doi:10.15252/embj.201490784
Gerullis, H., Wawroschek, F., Köhne, C.-H., Ecke, T.H., 2016. Vinflunine in the treatment of advanced urothelial cancer: clinical evidence and experience. Therapeutic Advances in Urology 9, 28–35. doi:10.1177/1756287216677903
Giampieri, F., Afrin, S., Forbes-Hernandez, T.Y., Gasparrini, M., Cianciosi, D., Reboredo-Rodriguez, P., Varela-Lopez, A., Quiles, J.L., Battino, M., 2019. Autophagy in Human Health and Disease: Novel Therapeutic Opportunities. Antioxidants & Redox Signaling 30, 577–634. doi:10.1089/ars.2017.7234
Green, D.R., Levine, B., 2014. To Be or Not to Be? How Selective Autophagy and Cell Death Govern Cell Fate. Cell 157, 65–75. doi:10.1016/j.cell.2014.02.049
Green, M., Loewenstein, P.M., 1988. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55, 1179–1188. doi:10.1016/0092-8674(88)90262-0
Guex, N., Peitsch, M.C., 1997. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 18, 2714–2723. doi:10.1002/elps.1150181505
Han, C., Sun, B.U., Wang, W., Cai, W.J., Lou, D., Sun, Y., Zhao, X., 2010. A pilot study on morphology and the mechanism involved in linearly patterned programmed cell necrosis in melanoma. Oncology Letters 1, 821–826. doi:10.3892/ol_00000144
Hayashi, H., Cuddy, M., Shu, V.C.-W., Yip, K.W., Madiraju, C., Diaz, P., Matsuyama, T., Kaibara, M., Taniyama, K., Vasile, S., Sergienko, E., Reed, J.C., 2009. Versatile Assays for High Throughput Screening for Activators or Inhibitors of Intracellular Proteases and Their Cellular Regulators. PLoS ONE 4. doi:10.1371/journal.pone.0007655
Hemelaar, J., Lelyveld, V. S., Kessler, B. M., & Ploegh, H. L. (2003). A Single Protease, Apg4B, Is Specific for the Autophagy-related Ubiquitin-like Proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. Journal of Biological Chemistry, 278(51), 51841–51850. doi: 10.1074/jbc.m308762200
Huang, B.-C., Yang, L.-W., 2019. Molecular dynamics simulations and linear response theories jointly describe biphasic responses of myoglobin relaxation and reveal evolutionarily conserved frequent communicators. Biophysics and Physicobiology 16, 473–484. doi:10.2142/biophysico.16.0_473
Humphrey, W., Dalke, A., Schulten, K., 1996. VMD: Visual molecular dynamics. Journal of Molecular Graphics 14, 33–38. doi:10.1016/0263-7855(96)00018-5
Ikeguchi, M., Ueno, J., Sato, M., Kidera, A., 2005. Protein Structural Change Upon Ligand Binding: Linear Response Theory. Physical Review Letters 94. doi:10.1103/physrevlett.94.078102
Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem. 2002; 23:1623-41.
Kauffman, K.J., Yu, S., Jin, J., Mugo, B., Nguyen, N., Obrien, A., Nag, S., Lystad, A.H., Melia, T.J., 2018. Delipidation of mammalian Atg8-family proteins by each of the four ATG4 proteases. Autophagy 1–19. doi:10.1080/15548627.2018.1437341
Kim S, Thiessen PA, Bolton EE, et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016; 44:D1202-13.
Kwon, D.H., Kim, L., Kim, B.-W., Kim, J.H., Roh, K.-H., Choi, E.-J., Song, H.K., 2017. A novel conformation of the LC3-interacting region motif revealed by the structure of a complex between LC3B and RavZ. Biochemical and Biophysical Research Communications 490, 1093–1099. doi:10.1016/j.bbrc.2017.06.173
Levine, B., Kroemer, G., 2008. Autophagy in the Pathogenesis of Disease. Cell 132, 27–42. doi:10.1016/j.cell.2007.12.018
Levine, B., Mizushima, N., Virgin, H.W., 2011. Autophagy in immunity and inflammation. Nature 469, 323–335. doi:10.1038/nature09782
Li, M., Chen, X., Ye, Q.-Z., Vogt, A., Yin, X.-M., 2012. A high-throughput FRET-based assay for determination of Atg4 activity. Autophagy 8, 401–412. doi:10.4161/auto.18777
Li, M., Hou, Y., Wang, J., Chen, X., Shao, Z.-M., Yin, X.-M., 2010. Kinetics Comparisons of Mammalian Atg4 Homologues Indicate Selective Preferences toward Diverse Atg8 Substrates. Journal of Biological Chemistry 286, 7327–7338. doi:10.1074/jbc.m110.199059
Liu, P.-F., Hsu, C.-J., Tsai, W.-L., Cheng, J.-S., Chen, J.-J., Huang, I.-F., Tseng, H.-H., Chang, H.-W., Shu, C.-W., 2017. Ablation of ATG4B Suppressed Autophagy and Activated AMPK for Cell Cycle Arrest in Cancer Cells. Cellular Physiology and Biochemistry 44, 728–740. doi:10.1159/000485286
Liu, P.-F., Leung, C.-M., Chang, Y.-H., Cheng, J.-S., Chen, J.-J., Weng, C.-J., Tsai, K.-W., Hsu, C.-J., Liu, Y.-C., Hsu, P.-C., Pan, H.-W., Shu, C.-W., 2014. ATG4B promotes colorectal cancer growth independent of autophagic flux. Autophagy 10, 1454–1465. doi:10.4161/auto.29556
Liu, P.-F., Tsai, K.-L., Hsu, C.-J., Tsai, W.-L., Cheng, J.-S., Chang, H.-W., Shiau, C.-W., Goan, Y.-G., Tseng, H.-H., Wu, C.-H., Reed, J.C., Yang, L.-W., Shu, C.-W., 2018. Drug Repurposing Screening Identifies Tioconazole as an ATG4 Inhibitor that Suppresses Autophagy and Sensitizes Cancer Cells to Chemotherapy. Theranostics 8, 830–845. doi:10.7150/thno.22012
Jiang, P., Mizushima, N., 2013. Autophagy and human diseases. Cell Research 24, 69–79. doi:10.1038/cr.2013.161
Maier JA, Martinez C, Kasavajhala K, et al. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput. 2015; 11:3696-713.
Mariño, G., Fernández, A.F., Cabrera, S., Lundberg, Y.W., Cabanillas, R., Rodríguez, F., Salvador-Montoliu, N., Vega, J.A., Germanà, A., Fueyo, A., Freije, J.M., López-Otín, C., 2010. Autophagy is essential for mouse sense of balance. Journal of Clinical Investigation 120, 2331–2344. doi:10.1172/jci42601
Maruyama, T., Noda, N.N., 2017. Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. The Journal of Antibiotics 71, 72–78. doi:10.1038/ja.2017.104
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30:2785-91.
Nguyen, T.G., Honson, N.S., Arns, S., Davis, T.L., Dhe-Paganon, S., Kovacic, S., Kumar, N.S., Pfeifer, T.A., Young, R.N., 2014. Development of Fluorescent Substrates and Assays for the Key Autophagy-Related Cysteine Protease Enzyme, ATG4B. ASSAY and Drug Development Technologies 12, 176–189. doi:10.1089/adt.2013.561
Nussinov, R., Tsai, C.-J., 2013. Allostery in Disease and in Drug Discovery. Cell 153, 293–305. doi:10.1016/j.cell.2013.03.034
Peng, W.-X., Wan, Y.-Y., Gong, A.-H., Ge, L., Jin, J., Xu, M., Wu, C.-Y., 2017. Egr-1 regulates irradiation-induced autophagy through Atg4B to promote radioresistance in hepatocellular carcinoma cells. Oncogenesis 6. doi:10.1038/oncsis.2016.91
Puranen JS, Vainio MJ, Johnson MS. Accurate conformation-dependent molecular electrostatic potentials for high-throughput in silico drug discovery. J Comput Chem. 2010; 31:1722-32.
Putyrski, M., Vakhrusheva, O., Bonn, F., Guntur, S., Vorobyov, A., Brandts, C., Dikic, I., Ernst, A., 2020. Disrupting the LC3 Interaction Region (LIR) Binding of Selective Autophagy Receptors Sensitizes AML Cell Lines to Cytarabine. Frontiers in Cell and Developmental Biology 8. doi:10.3389/fcell.2020.00208
Qiu, Z., Kuhn, B., Aebi, J., Lin, X., Ding, H., Zhou, Z., Xu, Z., Xu, D., Han, L., Liu, C., Qiu, H., Zhang, Y., Haap, W., Riemer, C., Stahl, M., Qin, N., Shen, H.C., Tang, G., 2016. Discovery of Fluoromethylketone-Based Peptidomimetics as Covalent ATG4B (Autophagin-1) Inhibitors. ACS Medicinal Chemistry Letters 7, 802–806. doi:10.1021/acsmedchemlett.6b00208
Quintana, M., Bilbao, A., Comas-Barceló, J., Bujons, J., Triola, G., 2019. Identification of benzo[cd]indol-2(1H)-ones as novel Atg4B inhibitors via a structure-based virtual screening and a novel AlphaScreen assay. European Journal of Medicinal Chemistry 178, 648–666. doi:10.1016/j.ejmech.2019.05.086
Read, R., Savelieva, K., Baker, K., Hansen, G., Vogel, P., 2010. Histopathological and Neurological Features of Atg4b Knockout Mice. Veterinary Pathology 48, 486–494. doi:10.1177/0300985810375810
Roe DR, Cheatham TE, 3rd. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput. 2013; 9:3084-95.
Rothe, K., Lin, H., Lin, K.B.L., Leung, A., Wang, H.M., Malekesmaeili, M., Brinkman, R.R., Forrest, D.L., Gorski, S.M., Jiang, X., 2014. The core autophagy protein ATG4B is a potential biomarker and therapeutic target in CML stem/progenitor cells. Blood 123, 3622–3634. doi:10.1182/blood-2013-07-516807
Rubinsztein, D.C., Codogno, P., Levine, B., 2012. Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews Drug Discovery 11, 709–730. doi:10.1038/nrd3802
Satoo, K., Noda, N.N., Kumeta, H., Fujioka, Y., Mizushima, N., Ohsumi, Y., Inagaki, F., 2009. The structure of Atg4B–LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. The EMBO Journal 28, 1341–1350. doi:10.1038/emboj.2009.80
Shu, C.-W., Drag, M., Bekes, M., Zhai, D., Salvesen, G.S., Reed, J.C., 2010. Synthetic substrates for measuring activity of autophagy proteases-autophagins (Atg4). Autophagy 6, 936–947. doi:10.4161/auto.6.7.13075
Shu, C.-W., Madiraju, C., Zhai, D., Welsh, K., Diaz, P., Sergienko, E., Sano, R., Reed, J.C., 2011. High-Throughput Fluorescence Assay for Small-Molecule Inhibitors of Autophagins/Atg4. Journal of Biomolecular Screening 16, 174–182. doi:10.1177/1087057110392996
Singh, S.S., Vats, S., Chia, A.Y.-Q., Tan, T.Z., Deng, S., Ong, M.S., Arfuso, F., Yap, C.T., Goh, B.C., Sethi, G., Huang, R.Y.-J., Shen, H.M., Manjithaya, R., Kumar, A.P., 2017. Dual role of autophagy in hallmarks of cancer. Oncogene 37, 1142–1158. doi:10.1038/s41388-017-0046-6
Sugawara, K., Suzuki, N.N., Fujioka, Y., Mizushima, N., Ohsumi, Y., Inagaki, F., 2005. Structural Basis for the Specificity and Catalysis of Human Atg4B Responsible for Mammalian Autophagy. Journal of Biological Chemistry 280, 40058–40065. doi:10.1074/jbc.m509158200
Toshima, T., Shirabe, K., Matsumoto, Y., Yoshiya, S., Ikegami, T., Yoshizumi, T., Soejima, Y., Ikeda, T., Maehara, Y., 2013. Autophagy enhances hepatocellular carcinoma progression by activation of mitochondrial β-oxidation. Journal of Gastroenterology 49, 907–916. doi:10.1007/s00535-013-0835-9
Tran, E., Chow, A., Goda, T., Wong, A., Blakely, K., Rocha, M., Taeb, S., Hoang, V.C., Liu, S.K., Emmenegger, U., 2013. Context-dependent role of ATG4B as target for autophagy inhibition in prostate cancer therapy. Biochemical and Biophysical Research Communications 441, 726–731. doi:10.1016/j.bbrc.2013.10.117
Trott, O., Olson, A.J., 2009. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. doi:10.1002/jcc.21334
Tsui V, Case DA. Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers. 2000;56:275-91
Vainio MJ, Johnson MS. Generating conformer ensembles using a multiobjective genetic algorithm. J Chem Inf Model. 2007; 47:2462-74.
Vezenkov, L., Honson, N.S., Kumar, N.S., Bosc, D., Kovacic, S., Nguyen, T.G., Pfeifer, T.A., Young, R.N., 2015. Development of fluorescent peptide substrates and assays for the key autophagy-initiating cysteine protease enzyme, ATG4B. Bioorganic & Medicinal Chemistry 23, 3237–3247. doi:10.1016/j.bmc.2015.04.064
Vivès, E., Brodin, P., Lebleu, B., 1997. A Truncated HIV-1 Tat Protein Basic Domain Rapidly Translocates through the Plasma Membrane and Accumulates in the Cell Nucleus. Journal of Biological Chemistry 272, 16010–16017. doi:10.1074/jbc.272.25.16010
Wang J, Wang W, Kollman PA, et al. Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model. 2006; 25:247-60.
Wang J, Wolf RM, Caldwell JW, et al. Development and testing of a general amber force field. J Comput Chem. 2004; 25:1157-74.
Wang JC, Lin JH, Chen CM, et al. Robust scoring functions for protein-ligand interactions with quantum chemical charge models. J Chem Inf Model. 2011; 51:2528-37.
White, E., 2012. Deconvoluting the context-dependent role for autophagy in cancer. Nature Reviews Cancer 12, 401–410. doi:10.1038/nrc3262
Wu, S., Su, J., Qian, H., Guo, T., 2015. SLC27A4 regulate ATG4B activity and control reactions to chemotherapeutics-induced autophagy in human lung cancer cells. Tumor Biology 37, 6943–6952. doi:10.1007/s13277-015-4587-4
Wu, Y., Ni, Z., Yan, X., Dai, X., Hu, C., Zheng, Y., He, F., Lian, J., 2016. Targeting theMIR34C-5p-ATG4B-autophagy axis enhances the sensitivity of cervical cancer cells to pirarubicin. Autophagy 12, 1105–1117. doi:10.1080/15548627.2016.1173798
Xu, D., Xu, Z., Han, L., Liu, C., Zhou, Z., Qiu, Z., Lin, X., Tang, G., Shen, H., Aebi, J., Riemer, C., Kuhn, B., Stahl, M., Mark, D., Qin, N., Ding, H., 2016. Identification of New ATG4B Inhibitors Based on a Novel High-Throughput Screening Platform. SLAS DISCOVERY: Advancing Life Sciences R&D 22, 338–347. doi:10.1177/1087057116639202
Yang, A., Herter-Sprie, G., Zhang, H., Lin, E.Y., Biancur, D., Wang, X., Deng, J., Hai, J., Yang, S., Wong, K.-K., Kimmelman, A.C., 2018. Autophagy Sustains Pancreatic Cancer Growth through Both Cell-Autonomous and Nonautonomous Mechanisms. Cancer Discovery 8, 276–287. doi:10.1158/2159-8290.cd-17-0952
Yang, L.-W., Kitao, A., Huang, B.-C., Gō, N., 2014. Ligand-Induced Protein Responses and Mechanical Signal Propagation Described by Linear Response Theories. Biophysical Journal 107, 1415–1425. doi:10.1016/j.bpj.2014.07.049
Yang, Y.-P., Hu, L.-F., Zheng, H.-F., Mao, C.-J., Hu, W.-D., Xiong, K.-P., Wang, F., Liu, C.-F., 2013. Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacologica Sinica 34, 625–635. doi:10.1038/aps.2013.5
Yang, Z., Klionsky, D.J., 2010. Eaten alive: a history of macroautophagy. Nature Cell Biology 12, 814–822. doi:10.1038/ncb0910-814
Yu, L., Chen, Y., Tooze, S.A., 2017. Autophagy pathway: Cellular and molecular mechanisms. Autophagy 14, 207–215. doi:10.1080/15548627.2017.1378838
Zhang, L., Li, J., Ouyang, L., Liu, B., Cheng, Y., 2016. Unraveling the roles of Atg4 proteases from autophagy modulation to targeted cancer therapy. Cancer Letters 373, 19–26. doi:10.1016/j.canlet.2016.01.022
Advani, V.M., Dinman, J.D., 2015. Reprogramming the genetic code: The emerging role of ribosomal frameshifting in regulating cellular gene expression. BioEssays 38, 21–26. doi:10.1002/bies.201500131
Antczak, M., Popenda, M., Zok, T., Sarzynska, J., Ratajczak, T., Tomczyk, K., Adamiak, R.W., Szachniuk, M., 2016. New functionality of RNAComposer: an application to shape the axis of miR160 precursor structure. Acta Biochimica Polonica 63(4):737-744. doi:10.18388/abp.2016_1329
Atkins, F., J., Loughran, Gary, Bhatt, R., P., Firth, E., A., Baranov, V., P., 2016. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Research 44. doi:10.1093/nar/gkw530
Bekaert, M., Bidou, L., Denise, A., Duchateau-Nguyen, G., Forest, J.-P., Froidevaux, C., Hatin, I., Rousset, J.-P., Termier, M., 2003. Towards a computational model for -1 eukaryotic frameshifting sites. Bioinformatics 19, 327–335. doi:10.1093/bioinformatics/btf868
Belshaw, R., Pybus, O.G., Rambaut, A., 2007. The evolution of genome compression and genomic novelty in RNA viruses. Genome Research 17, 1496–1504. doi:10.1101/gr.6305707
Byun Y. and K. Han K., 2009. PseudoViewer3: generating planar drawings of large-scale RNA structures with pseudoknots. Bioinformatics 25:1435-1437. doi:10.1093/bioinformatics/btp252
Caly, L., Druce, J.D., Catton, M.G., Jans, D.A., Wagstaff, K.M., 2020. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research 178, 104787. doi:10.1016/j.antiviral.2020.104787
Chang, K.-C., Salawu, E.O., Chang, Y.-Y., Wen, J.-D., Yang, L.-W., 2019. Resolution-exchanged structural modeling and simulations jointly unravel that subunit rolling underlies the mechanism of programmed ribosomal frameshifting. Bioinformatics 35, 945–952. doi:10.1093/bioinformatics/bty762
Chen, P.C., (2019). A novel software to predict the -1 Programmed Ribosomal
Frameshifting (-1PRF) signal in virus genome – validated by cell-free bioassays [Unpublished master's thesis]. Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Taiwan
Chen, Y., Tao, H., Shen, S., Miao, Z., Li, L., Jia, Y., Zhang, H., Bai, X., Fu, X., 2020. A drug screening toolkit based on the –1 ribosomal frameshifting of SARS-CoV-2. Heliyon 6. doi:10.1016/j.heliyon.2020.e04793
Chou, M.-Y., Chang, K.-Y., 2009. An intermolecular RNA triplex provides insight into structural determinants for the pseudoknot stimulator of −1 ribosomal frameshifting. Nucleic Acids Research 38, 1676–1685. doi:10.1093/nar/gkp1107
Chen, G., Chang, K.-Y., Chou, M.-Y., Bustamante, C., Tinoco, I., 2009. Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of -1 ribosomal frameshifting. Proceedings of the National Academy of Sciences 106, 12706–12711. doi:10.1073/pnas.0905046106
Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W., 2015. GenBank. Nucleic Acids Research 44. doi:10.1093/nar/gkv1276
D.A. Case, K. Belfon, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, G. Giambasu, M.K. Gilson, H. Gohlke, A.W. Goetz,R Harris, S. Izadi, K. Kasava- jhala, A. Kovalenko, R. Krasny, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, V. Man, K.M. Merz, Y. Miao, O. Mikhailovskii, G. Monard, H. Nguyen, A. Onufriev, F. Pan, S. Pantano, R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, N. Skrynnikov, J. Smith, J. Swails, R.C. Walker, J. Wang, L. Wilson, R.M. Wolf, X. Wu, D.M. York and P.A. Kollman, 2020. AMBER 2020, University of California, San Francisco.
DeLano WL, 2002. The PyMOL molecular graphics system. http://www.pymol.org
Dong, L., Hu, S., Gao, J., 2020. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discoveries & Therapeutics 14, 58–60. doi:10.5582/ddt.2020.01012
Gedeck, P., Rohde, B., Bartels, C., 2006. QSAR − How Good Is It in Practice? Comparison of Descriptor Sets on an Unbiased Cross Section of Corporate Data Sets. Journal of Chemical Information and Modeling 46, 1924–1936. doi:10.1021/ci050413p
Genheden, S., Ryde, U., 2015. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery 10, 449–461. doi:10.1517/17460441.2015.1032936
Gordon, C.J., Tchesnokov, E.P., Feng, J.Y., Porter, D.P., Götte, M., 2020. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. Journal of Biological Chemistry 295, 4773–4779. doi:10.1074/jbc.ac120.013056
Greenidge, P.A., Kramer, C., Mozziconacci, J.-C., Wolf, R.M., 2012. MM/GBSA Binding Energy Prediction on the PDBbind Data Set: Successes, Failures, and Directions for Further Improvement. Journal of Chemical Information and Modeling 53, 201–209. doi:10.1021/ci300425v
Grentzmann, G., Ingram, J.A., Kelly, P.J., Gesteland, R.F., Atkins, J.F., 1998. A dual-luciferase reporter system for studying recoding signals. RNA 4 (4), 479–486.
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M.A., Drosten, C., Pöhlmann, S., 2020. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181. doi:10.1016/j.cell.2020.02.052
Holt, P.A., Chaires, J.B., Trent, J.O., 2008. Molecular Docking of Intercalators and Groove-Binders to Nucleic Acids Using Autodock and Surflex. Journal of Chemical Information and Modeling 48, 1602–1615. doi:10.1021/ci800063v
Hsu, H.-T., Lin, Y.-H., Chang, K.-Y., 2014. Synergetic regulation of translational reading-frame switch by ligand-responsive RNAs in mammalian cells. Nucleic Acids Research 42, 14070–14082. doi:10.1093/nar/gku1233
Jakalian, A., Jack, D.B., Bayly, C.I., 2002. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry 23, 1623–1641. doi:10.1002/jcc.10128
Kelly, J.A., Dinman, J.D., 2020. Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS-CoV-2. doi:10.1101/2020.03.13.991083
Ketteler, R., 2012. On programmed ribosomal frameshifting: the alternative proteomes. Frontiers in Genetics 3. doi:10.3389/fgene.2012.00242
Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D.A., Cheatham, T.E., 2000. Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Accounts of Chemical Research 33, 889–897. doi:10.1021/ar000033j
Lauring, A.S., Hodcroft, E.B., 2021. Genetic Variants of SARS-CoV-2—What Do They Mean? JAMA. doi:10.1001/jama.2020.27124
Li, G., Clercq, E.D., 2020. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews Drug Discovery 19, 149–150. doi:10.1038/d41573-020-00016-0
Lin, Y.-H., Chang, K.-Y., 2016. Rational design of a synthetic mammalian riboswitch as a ligand-responsive -1 ribosomal frame-shifting stimulator. Nucleic Acids Research 44, 9005–9015. doi:10.1093/nar/gkw718
Massova, I., Kollman, P.A., 2000. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design 18, 113–135. doi:10.1023/A:1008763014207
Mckee, D.L., Sternberg, A., Stange, U., Laufer, S., Naujokat, C., 2020. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacological Research 157, 104859. doi:10.1016/j.phrs.2020.104859
Miller, B.R., Mcgee, T.D., Swails, J.M., Homeyer, N., Gohlke, H., Roitberg, A.E., 2012. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation 8, 3314–3321. doi:10.1021/ct300418h
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30:2785-91.
Namy, O., Moran, S.J., Stuart, D.I., Gilbert, R.J.C., Brierley, I., 2006. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441, 244–247. doi:10.1038/nature04735
Neupane, K., Munshi, S., Zhao, M., Ritchie, D.B., Ileperuma, S.M., Woodside, M.T., 2020. Anti-frameshifting ligand active against SARS coronavirus-2 is resistant to natural mutations of the frameshift-stimulatory pseudoknot. doi:10.1101/2020.06.29.178707
Nowakowski, J., Tinoco, I., 1997. RNA Structure and Stability. Seminars in Virology 8, 153–165. doi:10.1006/smvy.1997.0118
Park, S.-J., Kim, Y.-G., Park, H.-J., 2011. Identification of RNA Pseudoknot-Binding Ligand That Inhibits the −1 Ribosomal Frameshifting of SARS-Coronavirus by Structure-Based Virtual Screening. Journal of the American Chemical Society 133, 10094–10100. doi:10.1021/ja1098325
Plant, E.P., Dinman, J.D., 2008. The role of programmed-1 ribosomal frameshifting in coronavirus propagation. Frontiers in Bioscience Volume, 4873. doi:10.2741/3046
Plant, E.P., Jacobs, K. L., Harger, J. W., Meskauskas, A., Jacobs, J. L., Baxter, J. L., Petrov, A. N., & Dinman, J. D., 2003. The 9-A solution: How mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting. Rna 9, 168–174. doi:10.1261/rna.2132503
Plant, E.P., Pérez-Alvarado, G.C., Jacobs, J.L., Mukhopadhyay, B., Hennig, M., Dinman, J.D., 2005. A Three-Stemmed mRNA Pseudoknot in the SARS Coronavirus Frameshift Signal. PLoS Biology 3. doi:10.1371/journal.pbio.0030172
Ricci, C.G., Netz, P.A., 2009. Docking Studies on DNA-Ligand Interactions: Building and Application of a Protocol To Identify the Binding Mode. Journal of Chemical Information and Modeling 49, 1925–1935. doi:10.1021/ci9001537
Ritchie, D.B., Foster, D.A.N., Woodside, M.T., 2012. Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. Proceedings of the National Academy of Sciences 109, 16167–16172. doi:10.1073/pnas.1204114109
Ritchie, D.B., Soong, J., Sikkema, W.K.A., Woodside, M.T., 2014. Anti-frameshifting Ligand Reduces the Conformational Plasticity of the SARS Virus Pseudoknot. Journal of the American Chemical Society 136, 2196–2199. doi:10.1021/ja410344b
Sanders, J.M., Monogue, M.L., Jodlowski, T.Z., Cutrell, J.B., 2020. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19). Jama. doi:10.1001/jama.2020.6019
Su, M.-C., 2005. An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus. Nucleic Acids Research 33, 4265–4275. doi:10.1093/nar/gki731
Sun, Y., Abriola, L., Surovtseva, Y.V., Lindenbach, B.D., Guo, J.U., 2020. Restriction of SARS-CoV-2 Replication by Targeting Programmed −1 Ribosomal Frameshifting In Vitro. doi:10.1101/2020.10.21.349225
Tanimoto, T.T., 1958. An elementary mathematical theory of classification and prediction. Internal IBM Technical Report, New York.
Trott, O., Olson, A.J., 2009. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. doi:10.1002/jcc.21334
Volz, E., Hill, V., McCrone, J.T., Price, A., Jorgensen, D., O’Toole, Á., Southgate, J., Johnson, R., Jackson, B., Nascimento, F.F., Rey, S.M., Nicholls, S.M., Colquhoun, R.M., da Silva Filipe, A., Shepherd, J., Pascall, D.J., Shah, R., Jesudason, N., Li, K., Jarrett, R., Pacchiarini, N., Bull, M., Geidelberg, L., Siveroni, I., Goodfellow, I., Loman, N.J., Pybus, O.G., Robertson, D.L., Thomson, E.C., Rambaut, A., Connor, T.R., Koshy, C., Wise, E., Cortes, N., Lynch, J., Kidd, S., Mori, M., Fairley, D.J., Curran, T., McKenna, J.P., Adams, H., Fraser, C., Golubchik, T., Bonsall, D., Moore, C., Caddy, S.L., Khokhar, F.A., Wantoch, M., Reynolds, N., Warne, B., Maksimovic, J., Spellman, K., McCluggage, K., John, M., Beer, R., Afifi, S., Morgan, S., Marchbank, A., Price, A., Kitchen, C., Gulliver, H., Merrick, I., Southgate, J., Guest, M., Munn, R., Workman, T., Connor, T.R., Fuller, W., Bresner, C., Snell, L.B., Charalampous, T., Nebbia, G., Batra, R., Edgeworth, J., Robson, S.C., Beckett, A., Loveson, K.F., Aanensen, D.M., Underwood, A.P., Yeats, C.A., Abudahab, K., Taylor, B.E.W., Menegazzo, M., Clark, G., Smith, W., Khakh, M., Fleming, V.M., Lister, M.M., Howson-Wells, H.C., Berry, L., Boswell, T., Joseph, A., Willingham, I., Bird, P., Helmer, T., Fallon, K., Holmes, C., Tang, J., Raviprakash, V., Campbell, S., Sheriff, N., Loose, M.W., Holmes, N., Moore, C., Carlile, M., Wright, V., Sang, F., Debebe, J., Coll, F., Signell, A.W., Betancor, G., Wilson, H.D., Feltwell, T., Houldcroft, C.J., Eldirdiri, S., Kenyon, A., Davis, T., Pybus, O., du Plessis, L., Zarebski, A., Raghwani, J., Kraemer, M., Francois, S., Attwood, S., Vasylyeva, T., Torok, M.E., Hamilton, W.L., Goodfellow, I.G., Hall, G., Jahun, A.S., Chaudhry, Y., Hosmillo, M., Pinckert, M.L., Georgana, I., Yakovleva, A., Meredith, L.W., Moses, S., Lowe, H., Ryan, F., Fisher, C.L., Awan, A.R., Boyes, J., Breuer, J., Harris, K.A., Brown, J.R., Shah, D., Atkinson, L., Lee, J.C.D., Alcolea-Medina, A., Moore, N., Cortes, N., Williams, R., Chapman, M.R., Levett, L.J., Heaney, J., Smith, D.L., Bashton, M., Young, G.R., Allan, J., Loh, J., Randell, P.A., Cox, A., Madona, P., Holmes, A., Bolt, F., Price, J., Mookerjee, S., Rowan, A., Taylor, G.P., Ragonnet-Cronin, M., Nascimento, F.F., Jorgensen, D., Siveroni, I., Johnson, R., Boyd, O., Geidelberg, L., Volz, E.M., Brunker, K., Smollett, K.L., Loman, N.J., Quick, J., McMurray, C., Stockton, J., Nicholls, S., Rowe, W., Poplawski, R., Martinez-Nunez, R.T., Mason, J., Robinson, T.I., O'Toole, E., Watts, J., Breen, C., Cowell, A., Ludden, C., Sluga, G., Machin, N.W., Ahmad, S.S.Y., George, R.P., Halstead, F., Sivaprakasam, V., Thomson, E.C., Shepherd, J.G., Asamaphan, P., Niebel, M.O., Li, K.K., Shah, R.N., Jesudason, N.G., Parr, Y.A., Tong, L., Broos, A., Mair, D., Nichols, J., Carmichael, S.N., Nomikou, K., Aranday-Cortes, E., Johnson, N., Starinskij, I., da Silva Filipe, A., Robertson, D.L., Orton, R.J., Hughes, J., Vattipally, S., Singer, J.B., Hale, A.D., Macfarlane-Smith, L.R., Harper, K.L., Taha, Y., Payne, B.A.I., Burton-Fanning, S., Waugh, S., Collins, J., Eltringham, G., Templeton, K.E., McHugh, M.P., Dewar, R., Wastenge, E., Dervisevic, S., Stanley, R., Prakash, R., Stuart, C., Elumogo, N., Sethi, D.K., Meader, E.J., Coupland, L.J., Potter, W., Graham, C., Barton, E., Padgett, D., Scott, G., Swindells, E., Greenaway, J., Nelson, A., Yew, W.C., Resende Silva, P.C., Andersson, M., Shaw, R., Peto, T., Justice, A., Eyre, D., Crooke, D., Hoosdally, S., Sloan, T.J., Duckworth, N., Walsh, S., Chauhan, A.J., Glaysher, S., Bicknell, K., Wyllie, S., Butcher, E., Elliott, S., Lloyd, A., Impey, R., Levene, N., Monaghan, L., Bradley, D.T., Allara, E., Pearson, C., Muir, P., Vipond, I.B., Hopes, R., Pymont, H.M., Hutchings, S., Curran, M.D., Parmar, S., Lackenby, A., Mbisa, T., Platt, S., Miah, S., Bibby, D., Manso, C., Hubb, J., Chand, M., Dabrera, G., Ramsay, M., Bradshaw, D., Thornton, A., Myers, R., Schaefer, U., Groves, N., Gallagher, E., Lee, D., Williams, D., Ellaby, N., Harrison, I., Hartman, H., Manesis, N., Patel, V., Bishop, C., Chalker, V., Osman, H., Bosworth, A., Robinson, E., Holden, M.T.G., Shaaban, S., Birchley, A., Adams, A., Davies, A., Gaskin, A., Plimmer, A., Gatica-Wilcox, B., McKerr, C., Moore, C., Williams, C., Heyburn, D., De Lacy, E., Hilvers, E., Downing, F., Shankar, G., Jones, H., Asad, H., Coombes, J., Watkins, J., Evans, J.M., Fina, L., Gifford, L., Gilbert, L., Graham, L., Perry, M., Morgan, M., Bull, M., Cronin, M., Pacchiarini, N., Craine, N., Jones, R., Howe, R., Corden, S., Rey, S., Kumziene-Summerhayes, S., Taylor, S., Cottrell, S., Jones, S., Edwards, S., O’Grady, J., Page, A.J., Wain, J., Webber, M.A., Mather, A.E., Baker, D.J., Rudder, S., Yasir, M., Thomson, N.M., Aydin, A., Tedim, A.P., Kay, G.L., Trotter, A.J., Gilroy, R.A.J., Alikhan, N.-F., de Oliveira Martins, L., Le-Viet, T., Meadows, L., Kolyva, A., Diaz, M., Bell, A., Gutierrez, A.V., Charles, I.G., Adriaenssens, E.M., Kingsley, R.A., Casey, A., Simpson, D.A., Molnar, Z., Thompson, T., Acheson, E., Masoli, J.A.H., Knight, B.A., Hattersley, A., Ellard, S., Auckland, C., Mahungu, T.W., Irish-Tavares, D., Haque, T., Bourgeois, Y., Scarlett, G.P., Partridge, D.G., Raza, M., Evans, C., Johnson, K., Liggett, S., Baker, P., Essex, S., Lyons, R.A., Caller, L.G., Castellano, S., Williams, R.J., Kristiansen, M., Roy, S., Williams, C.A., Dyal, P.L., Tutill, H.J., Panchbhaya, Y.N., Forrest, L.M., Niola, P., Findlay, J., Brooks, T.T., Gavriil, A., Mestek-Boukhibar, L., Weeks, S., Pandey, S., Berry, L., Jones, K., Richter, A., Beggs, A., Smith, C.P., Bucca, G., Hesketh, A.R., Harrison, E.M., Peacock, S.J., Palmer, S., Churcher, C.M., Bellis, K.L., Girgis, S.T., Naydenova, P., Blane, B., Sridhar, S., Ruis, C., Forrest, S., Cormie, C., Gill, H.K., Dias, J., Higginson, E.E., Maes, M., Young, J., Kermack, L.M., Hadjirin, N.F., Aggarwal, D., Griffith, L., Swingler, T., Davidson, R.K., Rambaut, A., Williams, T., Balcazar, C.E., Gallagher, M.D., O'Toole, Á., Rooke, S., Jackson, B., Colquhoun, R., Ashworth, J., Hill, V., McCrone, J.T., Scher, E., Yu, X., Williamson, K.A., Stanton, T.D., Michell, S.L., Bewshea, C.M., Temperton, B., Michelsen, M.L., Warwick-Dugdale, J., Manley, R., Farbos, A., Harrison, J.W., Sambles, C.M., Studholme, D.J., Jeffries, A.R., Darby, A.C., Hiscox, J.A., Paterson, S., Iturriza-Gomara, M., Jackson, K.A., Lucaci, A.O., Vamos, E.E., Hughes, M., Rainbow, L., Eccles, R., Nelson, C., Whitehead, M., Turtle, L., Haldenby, S.T., Gregory, R., Gemmell, M., Kwiatkowski, D., de Silva, T.I., Smith, N., Angyal, A., Lindsey, B.B., Groves, D.C., Green, L.R., Wang, D., Freeman, T.M., Parker, M.D., Keeley, A.J., Parsons, P.J., Tucker, R.M., Brown, R., Wyles, M., Constantinidou, C., Unnikrishnan, M., Ott, S., Cheng, J.K.J., Bridgewater, H.E., Frost, L.R., Taylor-Joyce, G., Stark, R., Baxter, L., Alam, M.T., Brown, P.E., McClure, P.C., Chappell, J.G., Tsoleridis, T., Ball, J., Gramatopoulos, D., Buck, D., Todd, J.A., Green, A., Trebes, A., MacIntyre-Cockett, G., de Cesare, M., Langford, C., Alderton, A., Amato, R., Goncalves, S., Jackson, D.K., Johnston, I., Sillitoe, J., Palmer, S., Lawniczak, M., Berriman, M., Danesh, J., Livett, R., Shirley, L., Farr, B., Quail, M., Thurston, S., Park, N., Betteridge, E., Weldon, D., Goodwin, S., Nelson, R., Beaver, C., Letchford, L., Jackson, D.A., Foulser, L., McMinn, L., Prestwood, L., Kay, S., Kane, L., Dorman, M.J., Martincorena, I., Puethe, C., Keatley, J.-P., Tonkin-Hill, G., Smith, C., Jamrozy, D., Beale, M.A., Patel, M., Ariani, C., Spencer-Chapman, M., Drury, E., Lo, S., Rajatileka, S., Scott, C., James, K., Buddenborg, S.K., Berger, D.J., Patel, G., Garcia-Casado, M.V., Dibling, T., McGuigan, S., Rogers, H.A., Hunter, A.D., Souster, E., Neaverson, A.S., 2021. Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell 184. doi:10.1016/j.cell.2020.11.020
Wang, J.-C., Lin, J.-H., Chen, C.-M., Perryman, A.L., Olson, A.J., 2011. Robust Scoring Functions for Protein–Ligand Interactions with Quantum Chemical Charge Models. Journal of Chemical Information and Modeling 51, 2528–2537. doi:10.1021/ci200220v
Wang, J., Wang, W., Kollman, P.A., Case, D.A., 2006. Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling 25, 247–260. doi:10.1016/j.jmgm.2005.12.005
Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., 2004. Development and testing of a general amber force field. Journal of Computational Chemistry 25, 1157–1174. doi:10.1002/jcc.20035
Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., Xiao, G., 2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research 30, 269–271. doi:10.1038/s41422-020-0282-0
White, K.M., Rosales, R., Yildiz, S., Kehrer, T, Miorin, L., Moreno, E., Jangra, S., Uccellini, M.B., Rathnasinghe, R., Coughlan, L., Martinez-Romero, C., Batra, J., Rojc, A., Bouhaddou, M., Fabius, J.M., Obernier, K., Dejosez, M., Guillén, M.J., Losada, A., Avilés, P., Schotsaert, M., Zwaka, T., Vignuzzi, M., Shokat, K.M., Krogan, N.J., García-Sastre, A., 2021. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science. doi:10.1126/science.abf4058
Wise, J., 2020. Covid-19: New coronavirus variant is identified in UK. BMJ m4857. doi:10.1136/bmj.m4857
Wise, J., 2021. Covid-19: The E484K mutation and the risks it poses. BMJ. doi:10.1136/bmj.n359
Yang, H.-C., Chen, C.-houh, Wang, J.-H., Liao, H.-C., Yang, C.-T., Chen, C.-W., Lin, Y.-C., Kao, C.-H., Lu, M.-Y.J., Liao, J.C., 2020. Analysis of genomic distributions of SARS-CoV-2 reveals a dominant strain type with strong allelic associations. Proceedings of the National Academy of Sciences 117, 30679–30686. doi:10.1073/pnas.2007840117

(此全文20260303後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 系綜對接方法應用於發現抗癌藥物:以自噬作用蛋白LC3為例
2. 可藥動態組的研究準備並發展透過測量COVID-19 Nsp16/10之活性來評估藥物篩選流程之準確性
3. 結合小分子對接和自由能計算篩選靶向自噬體蛋白質ATG4B之胰臟癌候選藥物
4. 利用電腦模擬結合部分結構資訊開發蛋白間交界面阻斷劑以用於癌症治療
5. 利用電腦方法預測某藥物是否為鴉片類受體之促進劑或抑制劑
6. 犬小芽孢菌的羊毛甾醇14-α脫甲基酶的功能特性並以結構為導向開發抗黴菌抑制物
7. 透過藥效基團錨點進行泛病毒蛋白酶藥物開發及舊藥新用
8. 結合準確而高效的化學相似物搜尋引擎以及接觸分佈擬合法來挑選能調控新冠病毒框架轉移效率的FDA老藥以阻殺病毒
9. 以蛋白質序列、結構及固有動態來正確地預測酵素催化位點
10. Protein dynamics and contact topology studies reveal characteristics of Protein-DNA binding and distribution of enzyme catalytic sites
11. 使用線性響應理論預測蛋白質結合配體後的結構變化
12. 在感知決策時關於決策之優化及適應的可塑性皮質-紋狀體迴路模型
13. 磷酸化後形成新的跨分子鹽橋可穩定FGF2過渡態之多聚體結構
14. 透過同源建模、經驗勢能和螢光共振能量轉移來更準確的預測膜蛋白四級結構
15. 植物磷酸轉運膜蛋白PHT1;1藉由機械化學協同作用促進無機磷的轉運
 
* *