帳號:guest(18.225.156.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王詣姈
作者(外文):Wang, Chih-Ling
論文名稱(中文):探討三株果蠅抑制多麩醯胺酸鏈毒性之研究
論文名稱(外文):Characterization of the three suppressors of polyglutamine toxicity in Drosophila
指導教授(中文):汪宏達
指導教授(外文):Wang, Horng Dar
口試委員(中文):桑自剛
詹智強
口試委員(外文):Sang, Tzu Kang
Chan, Chih Chiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:104080516
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:57
中文關鍵詞:多麩醯胺酸鏈亨丁頓舞蹈症神經退化性疾病
外文關鍵詞:polyglutamineHuntington’s diseaseneurodegenerative disease
相關次數:
  • 推薦推薦:0
  • 點閱點閱:23
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
亨丁頓舞蹈症是一種神經退化性疾病,與多麩醯胺酸鏈 (Polyglutamine)聚合的累積有關。目前尚未找到治療的方法。已有研究利用數種篩選平台篩選出改善多麩醯胺酸鏈聚合和毒性的基因。在我們先前的研究,已篩選出三株DGRC的果蠅可以緩解因多麩醯胺酸鏈毒性造成的粗糙眼。在這裡,我們發現DGRC202462、DGRC205154及DGRC205444這三株果蠅可減緩亨丁頓舞蹈症轉基因果蠅的HTT97Q毒性及蛋白質聚合。此外,DGRC205444果蠅株藉由elav-Gal4和appl-Gal4的驅動,可增強母果蠅氧化壓力耐受性。CG13025、CG8379 及CRMP基因表現量分別在DGRC202462、DGRC205154及DGRC205444這三株果蠅中有提高的現象。我們發現CG13025轉基因果蠅在elav-Gal4驅動下,只有母果蠅可以改善氧化壓力的耐受性。此外,CRMP 及CG8379基因具有部分緩解HTT毒性的能力。這個研究為亨丁頓舞蹈症提供了具有潛力的治療標靶。
Huntington’s disease is a neurodegenerative disease associated with accumulation of polyglutamine aggregations. There is no cure for this disease yet. Several screens to identify the genes to ameliorate polyglutamine aggregation and toxicity have been reported. In our previous screen, we identified that the three DGRC lines able to rescue the polyglutamine-induced rough eye in Drosophila. Here I discovered that the three DGRC202462, DGRC205154 and DGRC205444 fly lines have the ability to reduce HTT97Q toxicity and protein aggregations in HD transgenic flies. Moreover, the DGRC205444 fly line driven by elav-Gal4 and appl-Gal4 in female can enhance tolerance to oxidative stress. CG13025, CG8379 and CRMP are upregulated in DGRC202462, DGRC205154 and DGRC205444 fly lines, respectively. We found that CG13025 transgenic flies can improve the resistance to oxidative stress only in female by elav-Gal4. In addition, CRMP and CG8379 are able to partially relieve HTT toxicity. The study provides potential therapeutic targets for Huntington’s disease.
Abstract.........................................................................................................................I
中文摘要.......................................................................................................................II
致謝…….....................................................................................................................III
Contents .....................................................................................................................Ⅳ
Introduction .................................................................................................................1
Huntington’s disease ................................................................................................1
Drosophila melanogaster as genetic models for polyglutamine disease ................2
Noncoding RNAs and neurodegenerative diseases ................................................3
Materials and Methods ................................................................................................5
Fly strains and culture conditions ...........................................................................5
Fly Eye Imaging and Fluorescence Imaging in Neuro-2a Cells ............................5
Cell Culture and Transfection..................................................................................5
Filter-trap assay and slot blot assay.........................................................................6
RNA preparation and semi-quantitative RT-PCR ................................................7
Quantitative real-time PCR (Q-PCR) ....................................................................8
Plasmid construction ...............................................................................................8
Oxidative stress test..................................................................................................9
Results .........................................................................................................................10
The three of Drosophila lines DGRC202462, DGRC205154, and DGRC205444 can reduce the polyglutamine toxicity and partially relieve the apoptosis in transgenic flies.........................................................................................................10
The DGRC205444 fly line expressing in nervous system can enhance tolerance to oxidative stress…………………………………………………………………11
The three Drosophila lines DGRC202462, DGRC205154, and DGRC205444 can reduce toxicity and protein aggregations of HTT in HD transgenic flies...........................................................................................................................12
CRMP is upregulated in DGRC205444 fly line and partially relieve HTT toxicity in HD transgenic flies……………………………………………………………..13
CG13025 is upregulated in DGRC202462 fly line but cannot improve tolerance to oxidative stress neither rescue the rough eyes by Htt97Q………………........14
CG8379 is upregulated in DGRC205154 fly line and partially relieve HTT toxicity in HD transgenic flies……………………………………………………15
Both the gene CG8379 and CG13025 in Drosophila melanogaster cannot reduce protein aggregations of HTT in Neuro-2a cell.......................................................16
Discussion....................................................................................................................17
Figures.........................................................................................................................21
Appendix.....................................................................................................................40
Tables...........................................................................................................................43
References...................................................................................................................50

Arias, A. M. (2008). Drosophila melanogaster and the development of biology in the 20th century. Methods Mol Biol, 420, 1-25. doi:10.1007/978-1-59745-583-1_1
Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R., & Finkbeiner, S. (2004). Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature, 431(7010), 805-810. doi:10.1038/nature02998
Bartel, D. P. (2009). MicroRNA Target Recognition and Regulatory Functions. Cell, 136(2), 215-233. doi:10.1016/j.cell.2009.01.002
Bauer, P. O., & Nukina, N. (2009). The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem, 110(6), 1737-1765. doi:10.1111/j.1471-4159.2009.06302.x
Bellen, H. J., Tong, C., & Tsuda, H. (2010). 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci, 11(7), 514-522. doi:10.1038/nrn2839
Bennett, E. J., Shaler, T. A., Woodman, B., Ryu, K. Y., Zaitseva, T. S., Becker, C. H., . . . Kopito, R. R. (2007). Global changes to the ubiquitin system in Huntington's disease. Nature, 448(7154), 704-708. doi:10.1038/nature06022
Bhat, A. H., Dar, K. B., Anees, S., Zargar, M. A., Masood, A., Sofi, M. A., & Ganie, S. A. (2015). Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother, 74, 101-110. doi:10.1016/j.biopha.2015.07.025
Bier, E. (2005). Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet, 6(1), 9-23. doi:http://www.nature.com/nrg/journal/v6/n1/suppinfo/nrg1503_S1.html
Bilak, A., & Su, T. T. (2009). Regulation of Drosophila melanogaster pro-apoptotic gene hid. Apoptosis, 14(8), 943-949. doi:10.1007/s10495-009-0374-2
Bilen, J., Liu, N., & Bonini, N. M. (2006). A new role for microRNA pathways: modulation of degeneration induced by pathogenic human disease proteins. Cell Cycle, 5(24), 2835-2838. doi:10.4161/cc.5.24.3579
Bilen, J., Liu, N., Burnett, B. G., Pittman, R. N., & Bonini, N. M. (2006). MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol Cell, 24(1), 157-163. doi:10.1016/j.molcel.2006.07.030
Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118(2), 401-415.
Browne, S. E., & Beal, M. F. (2006). Oxidative damage in Huntington's disease pathogenesis. Antioxid Redox Signal, 8(11-12), 2061-2073. doi:10.1089/ars.2006.8.2061
Caughey, B., & Lansbury, P. T. (2003). Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci, 26, 267-298. doi:10.1146/annurev.neuro.26.010302.081142
Charrier, E., Reibel, S., Rogemond, V., Aguera, M., Thomasset, N., & Honnorat, J. (2003). Collapsin response mediator proteins (CRMPs): involvement in nervous system development and adult neurodegenerative disorders. Mol Neurobiol, 28(1), 51-64. doi:10.1385/MN:28:1:51
Chen, S.-F., Kang, M.-L., Chen, Y.-C., Tang, H.-W., Huang, C.-W., Li, W.-H., . . . Wang, H.-D. (2012). Autophagy-related gene 7 is downstream of heat shock protein 27 in the regulation of eye morphology, polyglutamine toxicity, and lifespan in Drosophila. Journal of Biomedical Science, 19(1), 52-52. doi:10.1186/1423-0127-19-52
Chiang, M.-C., Chern, Y., & Huang, R.-N. (2012). PPARgamma rescue of the mitochondrial dysfunction in Huntington's disease. Neurobiology of Disease, 45(1), 322-328. doi:http://dx.doi.org/10.1016/j.nbd.2011.08.016
Chiang, M.-C., Lee, Y.-C., Huang, C.-L., & Chern, Y. (2005). cAMP-response Element-binding Protein Contributes to Suppression of the A2A Adenosine Receptor Promoter by Mutant Huntingtin with Expanded Polyglutamine Residues. Journal of Biological Chemistry, 280(14), 14331-14340. doi:10.1074/jbc.M413279200
Choudhuri, S. (2010). Small noncoding RNAs: biogenesis, function, and emerging significance in toxicology. J Biochem Mol Toxicol, 24(3), 195-216. doi:10.1002/jbt.20325
Cutler, T., Sarkar, A., Moran, M., Steffensmeier, A., Puli, O. R., Mancini, G., . . . Singh, A. (2015). Drosophila Eye Model to Study Neuroprotective Role of CREB Binding Protein (CBP) in Alzheimer’s Disease. PLoS One, 10(9), e0137691. doi:10.1371/journal.pone.0137691
Dantuma, N. P., & Bott, L. C. (2014). The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front Mol Neurosci, 7, 70. doi:10.3389/fnmol.2014.00070
Esteller, M. (2011). Non-coding RNAs in human disease. Nat Rev Genet, 12(12), 861-874. doi:10.1038/nrg3074
Gatchel, J. R., & Zoghbi, H. Y. (2005). Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet, 6(10), 743-755. doi:10.1038/nrg1691
Goyal, L., McCall, K., Agapite, J., Hartwieg, E., & Steller, H. (2000). Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. The EMBO Journal, 19(4), 589-597. doi:10.1093/emboj/19.4.589
Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., & Binder, L. I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A, 83(13), 4913-4917.
Hackam, A. S., Singaraja, R., Wellington, C. L., Metzler, M., McCutcheon, K., Zhang, T., . . . Hayden, M. R. (1998). The influence of huntingtin protein size on nuclear localization and cellular toxicity. J Cell Biol, 141(5), 1097-1105.
Hands, S., Sinadinos, C., & Wyttenbach, A. (2008). Polyglutamine gene function and dysfunction in the ageing brain. Biochim Biophys Acta, 1779(8), 507-521. doi:10.1016/j.bbagrm.2008.05.008
Hands, S. L., & Wyttenbach, A. (2010). Neurotoxic protein oligomerisation associated with polyglutamine diseases. Acta Neuropathol, 120(4), 419-437. doi:10.1007/s00401-010-0703-0
Harjes, P., & Wanker, E. E. (2003). The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem Sci, 28(8), 425-433. doi:10.1016/S0968-0004(03)00168-3
Iijima-Ando, K., Wu, P., Drier, E. A., Iijima, K., & Yin, J. C. (2005). cAMP-response element-binding protein and heat-shock protein 70 additively suppress polyglutamine-mediated toxicity in Drosophila. Proc Natl Acad Sci U S A, 102(29), 10261-10266. doi:10.1073/pnas.0503937102
Jackson, G. R., Salecker, I., Dong, X., Yao, X., Arnheim, N., Faber, P. W., . . . Zipursky, S. L. (1998). Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron, 21(3), 633-642.
Johnson R, R. N., Jauch R, Gaughwin PM, Zuccato C, Cattaneo E, Stanton LW. ( 2010 ). Human accelerated region 1 noncoding RNA is repressed by REST in Huntington's disease. Physiol Genomics., 41(3), 269-274.
Johnson, R., Zuccato, C., Belyaev, N. D., Guest, D. J., Cattaneo, E., & Buckley, N. J. (2008). A microRNA-based gene dysregulation pathway in Huntington's disease. Neurobiology of Disease, 29(3), 438-445. doi:http://dx.doi.org/10.1016/j.nbd.2007.11.001
Jolly, C., & Lakhotia, S. C. (2006). Human sat III and Drosophila hsrω transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Research, 34(19), 5508-5514. doi:10.1093/nar/gkl711
Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H., . . . Muller-Hill, B. (1987). The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature, 325(6106), 733-736. doi:10.1038/325733a0
Kazemi-Esfarjani, P., & Benzer, S. (2000). Genetic suppression of polyglutamine toxicity in Drosophila. Science, 287(5459), 1837-1840.
Kunovsky, L., Kala, Z., Mitas, L., Dolina, J., Can, V., Kucerova, L., . . . Penka, I. Quality of life after bowel resection for Crohn s disease - first results. Rozhl Chir, 95(12), 444-448.
Kuo, Y., Ren, S., Lao, U., Edgar, B. A., & Wang, T. (2013). Suppression of polyglutamine protein toxicity by co-expression of a heat-shock protein 40 and a heat-shock protein 110. Cell Death Dis, 4, e833. doi:10.1038/cddis.2013.351
LaFerla, F. M., & Green, K. N. (2012). Animal models of Alzheimer disease. Cold Spring Harb Perspect Med, 2(11). doi:10.1101/cshperspect.a006320
Leung, A. K. L., & Sharp, P. A. (2010). MicroRNA Functions in Stress Responses. Molecular cell, 40(2), 205-215. doi:10.1016/j.molcel.2010.09.027
Liao, P. C., Lin, H. Y., Yuh, C. H., Yu, L. K., & Wang, H. D. (2008). The effect of neuronal expression of heat shock proteins 26 and 27 on lifespan, neurodegeneration, and apoptosis in Drosophila. Biochem Biophys Res Commun, 376(4), 637-641. doi:10.1016/j.bbrc.2008.08.161
Liu, C.-R., Chang, C.-R., Chern, Y., Wang, T.-H., Hsieh, W.-C., Shen, W.-C., . . . Cheng, T.-H. (2012). Spt4 Is Selectively Required for Transcription of Extended Trinucleotide Repeats. Cell, 148(4), 690-701. doi:https://doi.org/10.1016/j.cell.2011.12.032
Lo, Y.-F. (2016). A genetic screen for the suppressors of polyglutamine-induced rough eyes in Drosophila. Institute of Biotechnology, National Tsing Hua University master's thesis.
Mallik, M., & Lakhotia, S. C. (2009). RNAi for the large non-coding hsromega transcripts suppresses polyglutamine pathogenesis in Drosophila models. RNA Biol, 6(4), 464-478.
Mallik, M., & Lakhotia, S. C. (2010). Improved Activities of CREB Binding Protein, Heterogeneous Nuclear Ribonucleoproteins and Proteasome Following Downregulation of Noncoding hsrω Transcripts Help Suppress Poly(Q) Pathogenesis in Fly Models. Genetics, 184(4), 927-945. doi:10.1534/genetics.109.113696
Marsh, J. L., Walker, H., Theisen, H., Zhu, Y. Z., Fielder, T., Purcell, J., & Thompson, L. M. (2000). Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum Mol Genet, 9(1), 13-25.
Martindale, D., Hackam, A., Wieczorek, A., Ellerby, L., Wellington, C., McCutcheon, K., . . . Hayden, M. R. (1998). Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat Genet, 18(2), 150-154.
McGurk, L., Berson, A., & Bonini, N. M. (2015). Drosophila as an In Vivo Model for Human Neurodegenerative Disease. Genetics, 201(2), 377-402. doi:10.1534/genetics.115.179457
Mercer, T. R., Qureshi, I. A., Gokhan, S., Dinger, M. E., Li, G., Mattick, J. S., & Mehler, M. F. (2010). Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci, 11, 14. doi:10.1186/1471-2202-11-14
Michalik, A., & Van Broeckhoven, C. (2003). Pathogenesis of polyglutamine disorders: aggregation revisited. Hum Mol Genet, 12 Spec No 2, R173-186. doi:10.1093/hmg/ddg295
Michelhaugh, S. K., Lipovich, L., Blythe, J., Jia, H., Kapatos, G., & Bannon, M. J. (2011). Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers. J Neurochem, 116(3), 459-466. doi:10.1111/j.1471-4159.2010.07126.x
Modarresi, F., Faghihi, M. A., Lopez-Toledano, M. A., Fatemi, R. P., Magistri, M., Brothers, S. P., . . . Wahlestedt, C. (2012). Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol, 30(5), 453-459. doi:10.1038/nbt.2158
Mondal, T., Rasmussen, M., Pandey, G. K., Isaksson, A., & Kanduri, C. (2010). Characterization of the RNA content of chromatin. Genome Res, 20(7), 899-907. doi:10.1101/gr.103473.109
Morais, V. A., Verstreken, P., Roethig, A., Smet, J., Snellinx, A., Vanbrabant, M., . . . De Strooper, B. (2009). Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Molecular Medicine, 1(2), 99-111. doi:10.1002/emmm.200900006
Orr, H. T., & Zoghbi, H. Y. (2007). Trinucleotide repeat disorders. Annu Rev Neurosci, 30, 575-621. doi:10.1146/annurev.neuro.29.051605.113042
Perutz, M. F., Johnson, T., Suzuki, M., & Finch, J. T. (1994). Glutamine Repeats as Polar Zippers - Their Possible Role in Inherited Neurodegenerative Diseases. Proceedings of the National Academy of Sciences of the United States of America, 91(12), 5355-5358. doi:DOI 10.1073/pnas.91.12.5355
Qureshi, I. A., Mattick, J. S., & Mehler, M. F. (2010). Long non-coding RNAs in nervous system function and disease. Brain research, 1338C, 20-35. doi:10.1016/j.brainres.2010.03.110
Rampelt, H., Kirstein-Miles, J., Nillegoda, N. B., Chi, K., Scholz, S. R., Morimoto, R. I., & Bukau, B. (2012). Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. The EMBO Journal, 31(21), 4221-4235. doi:10.1038/emboj.2012.264
Rincon-Limas, D. E., Jensen, K., & Fernandez-Funez, P. (2012). Drosophila Models of Proteinopathies: the Little Fly that Could. Current Pharmaceutical Design, 18(8), 1108-1122. doi:10.2174/138161212799315894
Roher, A. E., Lowenson, J. D., Clarke, S., Woods, A. S., Cotter, R. J., Gowing, E., & Ball, M. J. (1993). beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 90(22), 10836-10840.
Ross, C. A. (1997). Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron, 19(6), 1147-1150.
Ross, C. A. (2002). Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron, 35(5), 819-822.
Ross, C. A., Becher, M. W., Colomer, V., Engelender, S., Wood, J. D., & Sharp, A. H. (1997). Huntington's disease and dentatorubral-pallidoluysian atrophy: proteins, pathogenesis and pathology. Brain Pathol, 7(3), 1003-1016.
Ross, C. A., & Poirier, M. A. (2005). What is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol, 6(11), 891-898.
Rubin, G. M., & Lewis, E. B. (2000). A brief history of Drosophila's contributions to genome research. Science, 287(5461), 2216-2218.
Rubin, G. M., Yandell, M. D., Wortman, J. R., Gabor Miklos, G. L., Nelson, C. R., Hariharan, I. K., . . . Lewis, S. (2000). Comparative genomics of the eukaryotes. Science, 287(5461), 2204-2215.
Sengupta, S. (2017). Noncoding RNAs in protein clearance pathways: implications in neurodegenerative diseases. J Genet, 96(1), 203-210.
Sengupta, S., & Lakhotia, S. C. (2006). Altered expressions of the noncoding hsromega gene enhances poly-Q-induced neurotoxicity in Drosophila. RNA Biol, 3(1), 28-35.
Shao, J., & Diamond, M. I. (2007). Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet, 16 Spec No. 2, R115-123. doi:10.1093/hmg/ddm213
Singh, A., & Irvine, K. D. (2012). Drosophila as a model for understanding development and disease. Developmental Dynamics, 241(1), 1-2. doi:10.1002/dvdy.23712
Spradling, A., Ganetsky, B., Hieter, P., Johnston, M., Olson, M., Orr-Weaver, T., . . . Waterston, R. (2006). New roles for model genetic organisms in understanding and treating human disease: report from the 2006 Genetics Society of America meeting. Genetics, 172(4), 2025-2032.
Steller, H. (2008). Regulation of apoptosis in Drosophila. Cell Death Differ, 15(7), 1132-1138.
Stroedicke, M., Bounab, Y., Strempel, N., Klockmeier, K., Yigit, S., Friedrich, R. P., . . . Wanker, E. E. (2015). Systematic interaction network filtering identifies CRMP1 as a novel suppressor of huntingtin misfolding and neurotoxicity. Genome Research, 25(5), 701-713. doi:10.1101/gr.182444.114
Sun, Q. (2007). The mechanism of pattern formation in the developing Drosophila retina. Sci China C Life Sci, 50(1), 120-124. doi:10.1007/s11427-007-0004-6
Sunwoo, H., Dinger, M. E., Wilusz, J. E., Amaral, P. P., Mattick, J. S., & Spector, D. L. (2009). MEN ε/β nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Research, 19(3), 347-359. doi:10.1101/gr.087775.108
Taylor, J. P., Taye, A. A., Campbell, C., Kazemi-Esfarjani, P., Fischbeck, K. H., & Min, K. T. (2003). Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein. Genes Dev, 17(12), 1463-1468. doi:10.1101/gad.1087503
Toba, G., Ohsako, T., Miyata, N., Ohtsuka, T., Seong, K. H., & Aigaki, T. (1999). The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster. Genetics, 151(2), 725-737.
Tomlinson, A., & Ready, D. F. (1987a). Cell fate in the Drosophila ommatidium. Dev Biol, 123(1), 264-275.
Tomlinson, A., & Ready, D. F. (1987b). Neuronal differentiation in Drosophila ommatidium. Dev Biol, 120(2), 366-376.
Treisman, J. E., & Heberlein, U. (1998). Eye development in Drosophila: formation of the eye field and control of differentiation. Curr Top Dev Biol, 39, 119-158.
Wang, C. T., Chen, Y. C., Wang, Y. Y., Huang, M. H., Yen, T. L., Li, H., . . . Wang, H. D. (2012). Reduced neuronal expression of ribose-5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila. Aging Cell, 11(1), 93-103. doi:10.1111/j.1474-9726.2011.00762.x
Wangler, M. F., Yamamoto, S., & Bellen, H. J. (2015). Fruit flies in biomedical research. Genetics, 199(3), 639-653. doi:10.1534/genetics.114.171785
Warrick, J. M., Chan, H. Y., Gray-Board, G. L., Chai, Y., Paulson, H. L., & Bonini, N. M. (1999). Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet, 23(4), 425-428. doi:10.1038/70532
Williams, A. J., & Paulson, H. L. (2008). Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci, 31(10), 521-528. doi:10.1016/j.tins.2008.07.004
Wolff, T., & Ready, D. F. (1991). The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development, 113(3), 841-850.
Xie, Y., Hayden, M. R., & Xu, B. (2010). BDNF overexpression in the forebrain rescues Huntington's disease phenotypes in YAC128 mice. J Neurosci, 30(44), 14708-14718. doi:10.1523/JNEUROSCI.1637-10.2010
Xu, Z., Tito, A. J., Rui, Y. N., & Zhang, S. (2015). Studying polyglutamine diseases in Drosophila. Exp Neurol, 274(Pt A), 25-41. doi:10.1016/j.expneurol.2015.08.002
Zhang, B., Arun, G., Mao, Y. S., Lazar, Z., Hung, G., Bhattacharjee, G., . . . Spector, D. L. (2012). The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Reports, 2(1), 111-123. doi:10.1016/j.celrep.2012.06.003
Zoghbi, H. Y., & Orr, H. T. (2000). Glutamine repeats and neurodegeneration. Annu Rev Neurosci, 23, 217-247. doi:10.1146/annurev.neuro.23.1.217

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *