帳號:guest(3.131.13.41)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳芳姿
作者(外文):Chen, Fang-Tzu
論文名稱(中文):酪蛋白激酶1α調控果蠅壽命之研究
論文名稱(外文):The study of casein kinase I alpha-mediated lifespan regulation in Drosophila
指導教授(中文):汪宏達
指導教授(外文):Wang, Horng-Dar
口試委員(中文):詹智強
王培育
口試委員(外文):Chan, Chih-Chiang
Wang, Pei-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:104080515
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:71
中文關鍵詞:酪蛋白激酶1α果蠅壽命壓力
外文關鍵詞:Casein kinase I alphaDrosophilaLifespanStress
相關次數:
  • 推薦推薦:0
  • 點閱點閱:47
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
酪蛋白激酶1α藉由數種訊息路徑如雷帕黴素標靶路徑及細胞自噬等參與許多生理機制,包含發育、生理時鐘等,然而,酪蛋白激酶1α是否可調控壽命以及其分子機制皆仍尚未知。在此,我們報導酪蛋白激酶1α突變果蠅株可延長壽命,並有數種長壽果蠅常見的表徵型,例如較短小的果蠅一齡幼蟲、生殖力的下降、抗飢餓能力的提升等。為了找出酪蛋白激酶1α調控壽命的標的組織,我們發現在全身、神經、以及脂肪體中降低酪蛋白激酶1α的表現量,可以延長壽命。另一方面,全身性地過度表現酪蛋白激酶1α會使壽命縮短。此外,酪蛋白激酶1α長壽突變株有較低的雷帕黴素標靶及訊息,伴隨著降低的磷酸化S6激酶與磷酸化蛋白激酶B的表現量,以及被提高的細胞自噬能力,並伴隨著提升的微管相關蛋白輕鏈3II的表現量。另外,藉由處以雷帕黴素的藥理抑制雷帕黴素訊息,發現突變果蠅株並沒有進一步的延長壽命,意味著酪蛋白激酶1α可能藉由雷帕黴素標靶訊息調控壽命。統整以上所述,我們的研究提供了酪蛋白激酶1α如何調控壽命的新見解。
Casein kinase I alpha (CKIα) is involved in multiple biological processes including development and circadian rhythm via different pathways such as TOR and autophagy. However, whether CKIα can regulate lifespan and its molecular mechanism are unknown. Here, we reported that CKIα mutant flies display extended lifespan and longevity related phenotypes like smaller larval length, reduced fecundity, and starvation resistance. To identify the target tissue that CKIα regulates lifespan, we found that the RNAi knockdown of CKIα in whole body, neuron, and fat body can extend lifespan. On the other hand, ubiquitous overexpression of CKIα shortens lifespan. Furthermore, CKIα longevity mutants exhibit lowered TOR signaling with reduced levels of p-S6K and p-AKT, and elevated autophagy activity with increased LC3-II levels. Moreover, pharmacological inhibiting TOR by treating rapamycin indicates that CKIα longevity mutants do not show further lifespan enhancement, suggesting that CKIα regulates lifespan possibly via TOR signaling. Together, our finding provides new insights into how CKIα regulates lifespan in Drosophila.
Abstract .......................................................................................................................... i
中文摘要........................................................................................................................ ii
致謝............................................................................................................................... iii
Table of Content ........................................................................................................... 1
Introduction .................................................................................................................. 3
Materials and methods ................................................................................................ 6
Fly culture and fly strains ................................................................................... 6
Lifespan assay....................................................................................................... 6
Lifespan assay under geneswitch system ........................................................... 6
Lifespan assay under rapamycin treatment ...................................................... 7
Starvation assay ................................................................................................... 7
Oxidative stress assay .......................................................................................... 7
Pupation assay ...................................................................................................... 8
Egg laying assay ................................................................................................... 8
Larval collection and larval length measuring assay........................................ 8
Climbing assay ..................................................................................................... 8
Immunoblotting.................................................................................................... 9
RNA extraction and Reverse transcription ..................................................... 10
Results ......................................................................................................................... 11
The CKIα Drosophila mutants exhibited extended lifespan........................... 11
CKIα mutant lines displayed several longevity related phenotypes .............. 12
CKIα mutant lines showed enhanced anti-starvation ability but only one allele exhibited anti-oxidative stress ability ..................................................... 12
CKIα mutant lines did not show improved climbing decline upon aging ..... 13
Reduced TOR signaling was detected in the CKIα longevity mutants ......... 13
Elevated autophagy activity was detected in CKIα longevity mutants ......... 13
Rapamycin treatment does not further enhance the extended lifespan in CKIα heterozygous mutants .............................................................................. 14
Ubiquitous knockdown of CKIα can prolong lifespan in Drosophila ............ 14
Ubiquitous knockdown of CKIα in adulthood shortens lifespan in Drosophila ........................................................................................................... 15
Knockdown of CKIα in neuron by elav-Gal4 and Tdc-Gal4 can prolong lifespan in Drosophila ........................................................................................ 15
Knockdown of CKIα in fat body can prolong lifespan in Drosophila ........... 16
Knockdown of CKIα in germline cannot prolong lifespan in Drosophila ..... 16
Reduced TOR and elevated autophagy activity were detected in the CKIα
2
RNAi lines by da-Gal4, elav-Gal4, and Tdc-Gal4 ............................................ 17
Anti-starvation ability was not detected in CKIα RNAi lines ........................ 17
CKIα knockdown induces autophagy activity which might involve in lifespan regulation .............................................................................................. 17
Ubiquitous overexpression of CKIα shortens lifespan in Drosophila ............ 18
Discussion.................................................................................................................... 19
Figures ......................................................................................................................... 22
Tables ........................................................................................................................... 56
Supplementary ........................................................................................................... 68
References ................................................................................................................... 69
Austad, S. N., & Fischer, K. E. (2016). Sex Differences in Lifespan. Cell Metab, 23(6), 1022-1033. doi:10.1016/j.cmet.2016.05.019
Avogaro, A., de Kreutzenberg, S. V., & Fadini, G. P. (2010). Insulin signaling and life span. Pflugers Arch, 459(2), 301-314. doi:10.1007/s00424-009-0721-8
Barnea, M., Haviv, L., Gutman, R., Chapnik, N., Madar, Z., & Froy, O. (2012). Metformin affects the circadian clock and metabolic rhythms in a tissue-specific manner. Biochim Biophys Acta, 1822(11), 1796-1806. doi:10.1016/j.bbadis.2012.08.005
Borgal, L., Rinschen, M. M., Dafinger, C., Hoff, S., Reinert, M. J., Lamkemeyer, T., . . . Schermer, B. (2014). Casein kinase 1 alpha phosphorylates the Wnt regulator Jade-1 and modulates its activity. J Biol Chem, 289(38), 26344-26356. doi:10.1074/jbc.M114.562165
Cheong, J. K., & Virshup, D. M. (2016). Keeping autophagy in cheCK1. Mol Cell Oncol, 3(3), e1045117. doi:10.1080/23723556.2015.1045117
Cheong, J. K., Zhang, F., Chua, P. J., Bay, B. H., Thorburn, A., & Virshup, D. M. (2015). Casein kinase 1alpha-dependent feedback loop controls autophagy in RAS-driven cancers. J Clin Invest, 125(4), 1401-1418. doi:10.1172/JCI78018
Deepashree, S., Shivanandappa, T., & Ramesh, S. R. (2017). Life History Traits of an Extended Longevity Phenotype of Drosophila melanogaster. Curr Aging Sci, 10(3), 224-238. doi:10.2174/1874609810666170209111350
Duan, S., Skaar, J. R., Kuchay, S., Toschi, A., Kanarek, N., Ben-Neriah, Y., & Pagano, M. (2011). mTOR generates an auto-amplification loop by triggering the betaTrCP- and CK1alpha-dependent degradation of DEPTOR. Mol Cell, 44(2), 317-324. doi:10.1016/j.molcel.2011.09.005
Fischer, J. A., Giniger, E., Maniatis, T., & Ptashne, M. (1988). GAL4 activates transcription in Drosophila. Nature, 332(6167), 853-856. doi:10.1038/332853a0
Green, C. J., Goransson, O., Kular, G. S., Leslie, N. R., Gray, A., Alessi, D. R., . . . Hundal, H. S. (2008). Use of Akt inhibitor and a drug-resistant mutant validates a critical role for protein kinase B/Akt in the insulin-dependent regulation of glucose and system A amino acid uptake. J Biol Chem, 283(41), 27653-27667. doi:10.1074/jbc.M802623200
Hale, C. M., Cheng, Q., Ortuno, D., Huang, M., Nojima, D., Kassner, P. D., . . . Carlisle, H. J. (2016). Identification of modulators of autophagic flux in an image-based high content siRNA screen. Autophagy, 12(4), 713-726. doi:10.1080/15548627.2016.1147669
70
Johnson, S. C., Rabinovitch, P. S., & Kaeberlein, M. (2013). mTOR is a key modulator of ageing and age-related disease. Nature, 493(7432), 338-345. doi:10.1038/nature11861
Jones, M. A., & Grotewiel, M. (2011). Drosophila as a model for age-related impairment in locomotor and other behaviors. Exp Gerontol, 46(5), 320-325. doi:10.1016/j.exger.2010.08.012
Lin, Y. H., Chen, Y. C., Kao, T. Y., Lin, Y. C., Hsu, T. E., Wu, Y. C., . . . Wang, H. D. (2014). Diacylglycerol lipase regulates lifespan and oxidative stress response by inversely modulating TOR signaling in Drosophila and C. elegans. Aging Cell, 13(4), 755-764. doi:10.1111/acel.12232
Liu, Y. L., Lu, W. C., Brummel, T. J., Yuh, C. H., Lin, P. T., Kao, T. Y., . . . Wang, H. D. (2009). Reduced expression of alpha-1,2-mannosidase I extends lifespan in Drosophila melanogaster and Caenorhabditis elegans. Aging Cell, 8(4), 370-379. doi:10.1111/j.1474-9726.2009.00471.x
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217. doi:10.1016/j.cell.2013.05.039
Mai, H., Xu, X., Mei, G., Hong, T., Huang, J., Wang, T., . . . Ye, Q. (2016). The interplay between HPIP and casein kinase 1alpha promotes renal cell carcinoma growth and metastasis via activation of mTOR pathway. Oncogenesis, 5(10), e260. doi:10.1038/oncsis.2016.44
Niccoli, T., & Partridge, L. (2012). Ageing as a risk factor for disease. Curr Biol, 22(17), R741-752. doi:10.1016/j.cub.2012.07.024
Pasula, S., Chakraborty, S., Choi, J. H., & Kim, J. H. (2010). Role of casein kinase 1 in the glucose sensor-mediated signaling pathway in yeast. BMC Cell Biol, 11, 17. doi:10.1186/1471-2121-11-17
Price, J. L., Fan, J. Y., Keightley, A., & Means, J. C. (2015). The role of casein kinase I in the Drosophila circadian clock. Methods Enzymol, 551, 175-195. doi:10.1016/bs.mie.2014.10.012
Santos, J. A., Logarinho, E., Tapia, C., Allende, C. C., Allende, J. E., & Sunkel, C. E. (1996). The casein kinase 1 alpha gene of Drosophila melanogaster is developmentally regulated and the kinase activity of the protein induced by DNA damage. J Cell Sci, 109 ( Pt 7), 1847-1856.
Shida, T., Kishimoto, T., Furuya, M., Nikaido, T., Koda, K., Takano, S., . . . Miyazaki, M. (2010). Expression of an activated mammalian target of rapamycin (mTOR) in gastroenteropancreatic neuroendocrine tumors. Cancer Chemother Pharmacol, 65(5), 889-893. doi:10.1007/s00280-009-1094-6
Siddle, K. (2011). Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol, 47(1), R1-10. doi:10.1530/JME-11-0022
71
Swarup, S., Pradhan-Sundd, T., & Verheyen, E. M. (2015). Genome-wide identification of phospho-regulators of Wnt signaling in Drosophila. Development, 142(8), 1502-1515. doi:10.1242/dev.116715
Tanemura, M., Ohmura, Y., Deguchi, T., Machida, T., Tsukamoto, R., Wada, H., . . . Doki, Y. (2012). Rapamycin causes upregulation of autophagy and impairs islets function both in vitro and in vivo. Am J Transplant, 12(1), 102-114. doi:10.1111/j.1600-6143.2011.03771.x
Ugrankar, R., Berglund, E., Akdemir, F., Tran, C., Kim, M. S., Noh, J., . . . Graff, J. M. (2015). Drosophila glucome screening identifies Ck1alpha as a regulator of mammalian glucose metabolism. Nat Commun, 6, 7102. doi:10.1038/ncomms8102
Wang, C. T., Chen, Y. C., Wang, Y. Y., Huang, M. H., Yen, T. L., Li, H., . . . Wang, H. D. (2012). Reduced neuronal expression of ribose-5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila. Aging Cell, 11(1), 93-103. doi:10.1111/j.1474-9726.2011.00762.x
Wang, H. D., Kazemi-Esfarjani, P., & Benzer, S. (2004). Multiple-stress analysis for isolation of Drosophila longevity genes. Proc Natl Acad Sci U S A, 101(34), 12610-12615. doi:10.1073/pnas.0404648101
Wullschleger, S., Loewith, R., & Hall, M. N. (2006). TOR signaling in growth and metabolism. Cell, 124(3), 471-484. doi:10.1016/j.cell.2006.01.016
Zhang, L., Jia, J., Wang, B., Amanai, K., Wharton, K. A., Jr., & Jiang, J. (2006). Regulation of wingless signaling by the CKI family in Drosophila limb development. Dev Biol, 299(1), 221-237. doi:10.1016/j.ydbio.2006.07.025
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *