帳號:guest(18.224.45.211)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):宋嘉翔
作者(外文):Song, Jia-Siang
論文名稱(中文):鎘對第一型血紅素氧化酶在中國倉鼠卵巢細胞中表現的研究
論文名稱(外文):Studies of the cadmium-induced Heme Oxygenase-1 expression in Chinese hamster ovary cells
指導教授(中文):林立元
指導教授(外文):Lin, Lih-Yuan
口試委員(中文):李易展
楊培銘
口試委員(外文):Lee, Yi-Jang
Yang, Pei-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:104080512
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:62
中文關鍵詞:金屬硫蛋白穀胱甘肽第一型血紅素氧化酶
外文關鍵詞:cadmiummetallothioneinglutathioneheme oxygenase-1
相關次數:
  • 推薦推薦:0
  • 點閱點閱:43
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
鎘是已知的環境污染物,會造成多種疾病與癌症。穀胱甘肽(glutathione, GSH) 和金屬硫蛋白(metallothionein, MT) 是保護細胞降低鎘毒性傷害的主要因子。除此之外,第一型血紅素氧化酶(heme oxygenase-1, HO-1) 也參與了減少鎘造成的毒性傷害。我們的研究主要在探討細胞暴露於鎘的情況下,MT、GSH和HO-1表現的關聯性。中國倉鼠卵巢細胞(Chinese hamster ovary cell, CHO K1) 為MT無法表現的細胞株,我們將CHO K1細胞處理鎘,發現鎘會活化γ-glutamylcysteine synthetase (γ-GCS) 進而增加GSH的含量,大量表現金屬感應轉錄因子(metal-responsive transcription factor 1, MTF-1) 和cellular myelocytomatosis oncogene (c-Myc) 或是以siRNA降低c-Myc基因表現,γ-GCS蛋白質表現都不會受到影響。HO-1蛋白的表現會隨著鎘濃度和處理時間的增加而增加,大量表現MTF-1和c-Myc或處理 c-Myc siRNA,HO-1的表現都不受到影響。若以siRNA降低c-Myc基因表現也不會改變γ-GCS的量。但降低 MTF-1基因表現, HO-1表現卻會上升。分析c-jun NH2-terminal protein kinase (JNK) 和c-Jun的活性發現他們都會隨著鎘濃度和鎘處理的時間增加而提高,處理JNK或活性氧化物(reactive oxygen species, ROS) 抑制劑都會減少HO-1的表現以及降低JNK 和c-Jun的活性。抗鎘型中國倉鼠卵巢細胞(CdR) 具有大量表現MT的能力,與CHO K1細胞比較,在CdR細胞中要活化HO-1表現以及提高JNK和c-Jun的活性需要更高劑量的鎘,相反的以siRNA降低MTF-1基因表現,除了降低MT基因表現外,也會增加HO-1的表現。我們的結果顯示MT在降低鎘的毒性扮演著重要的角色,在缺乏MT的情況下,會活化GSH和HO-1來降低鎘所造成的毒性傷害。
Cadmium (Cd) is a known environmental pollutant that can cause a variety of diseases and cancers. Glutathione (GSH) and metallothionein (MT) are the major factors to protect cells from Cd toxicity. Besides that, heme oxygenase (HO-1) is also involved in reducing the Cd-induced damaging effect. We investigated in this study the expression of MT, GSH and HO-1 under Cd exposure. Chinese hamster ovary (CHO K1) cells, an MT quiescent cell line, were treated with Cd and GSH content was examined. GSH increased with Cd treatment, and the increase was correlated with the activation of γ-glutamylcysteine synthetase (γ-GCS) expression after Cd stimulation. Overexpression of metal-responsive transcription factor 1 (MTF-1) or cellular myelocytomatosis oncogene (c-Myc) gene did not affect the γ-GCS level in Cd-treated cells. Similarly, knockdown of c-Myc gene expression did not alter γ-GCS level. Cd treatment elevated HO-1 levels in a dose- and time-dependent manner. However, HO-1 level was not affected by overexpression of either MTF-1 or c-Myc gene, or knockdown of c-Myc mRNA. Noticeably, HO-1 increased with the knockdown of MTF-1 expression. Analysis of the activity of c-jun NH2-terminal protein kinase (JNK) and c-Jun revealed that both increased with the increments of Cd concentration. Administration inhibitor for JNK or reactive oxygen species (ROS) resulted in a decreased HO-1 level and a decreased activity of JNK and c-Jun. A higher Cd concentration was required to stimulate JNK and c-Jun activity in MT gene highly amplified CHO cells (CdR) as compared to that of parental CHO K1 cells. On the contrary, knockdown of MTF-1 expression decrease MT expression but increased HO-1 level in Cd-treated CdR cells. Our results indicate that MT plays an effective role in reducing Cd toxicity. With the defect of MT gene expression, GSH and HO-1 are produced to attenuate Cd-induced toxicological effects.
目錄
中文摘要………………………………………………………………..3
英文摘要………………………………………………………………..5
緒論……………………………………………………………………..7
材料與方法…………………………………………………………….18
結果…………………………………………………………………….26
討論…………………………………………………………………….33
參考資料……………………………………………………………….38
附圖…………………………………………………………………….47
Adamis, P.D., Gomes, D.S., Pinto, M.L., Panek, A.D., Eleutherio, E.C., 2004. The role of glutathione transferases in cadmium stress. Toxicol Lett 154, 81-88.
Alam, J., Wicks, C., Stewart, D., Gong, P., Touchard, C., Otterbein, S., Choi, A.M., Burow, M.E., Tou, J., 2000. Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor. J Biol Chem 275, 27694-27702.
Andrews, G.K., 2001. Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals 14, 223-237.
Atif, F., Parvez, S., Pandey, S., Ali, M., Kaur, M., Rehman, H., Khan, H.A., Raisuddin, S., 2005. Modulatory effect of cadmium exposure on deltamethrin-induced oxidative stress in Channa punctata Bloch. Arch Environ Contam Toxicol 49, 371-377.
Beach, L.R., Palmiter, R.D., 1981. Amplification of the metallothionein-I gene in cadmium-resistant mouse cells. Proc Natl Acad Sci U S A 78, 2110-2114.
Benassi, B., Fanciulli, M., Fiorentino, F., Porrello, A., Chiorino, G., Loda, M., Zupi, G., Biroccio, A., 2006. c-Myc phosphorylation is required for cellular response to oxidative stress. Mol Cell 21, 509-519.
Biswas, C., Shah, N., Muthu, M., La, P., Fernando, A.P., Sengupta, S., Yang, G., Dennery, P.A., 2014. Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses. J Biol Chem 289, 26882-26894.
Boonprasert, K., Satarug, S., Morais, C., Gobe, G.C., Johnson, D.W., Na-Bangchang, K., Vesey, D.A., 2016. The stress response of human proximal tubule cells to cadmium involves up-regulation of haemoxygenase 1 and metallothionein but not cytochrome P450 enzymes. Toxicol Lett 249, 5-14.
Bu, T., Mi, Y., Zeng, W., Zhang, C., 2011. Protective effect of quercetin on cadmium-induced oxidative toxicity on germ cells in male mice. Anat Rec (Hoboken) 294, 520-526.
Cherian, M.G., Goyer, R.A., 1978. Methallothioneins and their role in the metabolism and toxicity of metals. Life Sci 23, 1-9.
Chiquoine, A.D., Suntzeff, V., 1965. Sensitivity of mammals to cadmium necrosis of the testis. J Reprod Fertil 10, 455-457.
Chu, G., 1994. Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J Biol Chem 269, 787-790.
Crawford, B.D., Enger, M.D., Griffith, B.B., Griffith, J.K., Hanners, J.L., Longmire, J.L., Munk, A.C., Stallings, R.L., Tesmer, J.G., Walters, R.A., et al., 1985. Coordinate amplification of metallothionein I and II genes in cadmium-resistant Chinese hamster cells: implications for mechanisms regulating metallothionein gene expression. Mol Cell Biol 5, 320-329.
Cui, W., Fu, G., Wu, H., Shen, W., 2011. Cadmium-induced heme oxygenase-1 gene expression is associated with the depletion of glutathione in the roots of Medicago sativa. Biometals 24, 93-103.
Czaja, M.J., Weiner, F.R., Freedman, J.H., 1991. Amplification of the metallothionein-1 and metallothionein-2 genes in copper-resistant hepatoma cells. J Cell Physiol 147, 434-438.
de Lamirande, E., Jiang, H., Zini, A., Kodama, H., Gagnon, C., 1997. Reactive oxygen species and sperm physiology. Rev Reprod 2, 48-54.
Drasch, G.A., 1983. An increase of cadmium body burden for this century--an investigation on human tissues. Sci Total Environ 26, 111-119.
Dubik, D., Dembinski, T.C., Shiu, R.P., 1987. Stimulation of c-myc oncogene expression associated with estrogen-induced proliferation of human breast cancer cells. Cancer Res 47, 6517-6521.
Ercal, N., Gurer-Orhan, H., Aykin-Burns, N., 2001. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1, 529-539.
Evan, G.I., Wyllie, A.H., Gilbert, C.S., Littlewood, T.D., Land, H., Brooks, M., Waters, C.M., Penn, L.Z., Hancock, D.C., 1992. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119-128.
Farina, A., Faiola, F., Martinez, E., 2004. Reconstitution of an E box-binding Myc:Max complex with recombinant full-length proteins expressed in Escherichia coli. Protein Expr Purif 34, 215-222.
Filomeni, G., Aquilano, K., Rotilio, G., Ciriolo, M.R., 2003. Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulfide. Cancer Res 63, 5940-5949.
Fischer, E.H., Davie, E.W., 1998. Recent excitement regarding metallothionein. Proc Natl Acad Sci U S A 95, 3333-3334.
Fotakis, G., Cemeli, E., Anderson, D., Timbrell, J.A., 2005. Cadmium chloride-induced DNA and lysosomal damage in a hepatoma cell line. Toxicol In Vitro 19, 481-489.
Fotakis, G., Timbrell, J.A., 2006. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160, 171-177.
Gailer, J., Lindner, W., 1998. On-column formation of arsenic-glutathione species detected by size-exclusion chromatography in conjunction with arsenic-specific detectors. J Chromatogr B Biomed Sci Appl 716, 83-93.
Gavett, S.H., Oberdorster, G., 1994. Cadmium chloride and cadmium metallothionein-induced pulmonary injury and recruitment of polymorphonuclear leukocytes. Exp Lung Res 20, 517-537.
Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., Groneberg, D.A., 2006. The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1, 22.
Gomes, D.S., Fragoso, L.C., Riger, C.J., Panek, A.D., Eleutherio, E.C., 2002. Regulation of cadmium uptake by Saccharomyces cerevisiae. Biochim Biophys Acta 1573, 21-25.
Gordan, J.D., Thompson, C.B., Simon, M.C., 2007. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12, 108-113.
Griffith, O.W., 1999. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 27, 922-935.
Gunes, C., Heuchel, R., Georgiev, O., Muller, K.H., Lichtlen, P., Bluthmann, H., Marino, S., Aguzzi, A., Schaffner, W., 1998. Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. EMBO J 17, 2846-2854.
Gunther, V., Lindert, U., Schaffner, W., 2012. The taste of heavy metals: gene regulation by MTF-1. Biochim Biophys Acta 1823, 1416-1425.
Harvey, C.J., Thimmulappa, R.K., Singh, A., Blake, D.J., Ling, G., Wakabayashi, N., Fujii, J., Myers, A., Biswal, S., 2009. Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 46, 443-453.
Hatcher, E.L., Chen, Y., Kang, Y.J., 1995. Cadmium resistance in A549 cells correlates with elevated glutathione content but not antioxidant enzymatic activities. Free Radic Biol Med 19, 805-812.
Heuchel, R., Radtke, F., Georgiev, O., Stark, G., Aguet, M., Schaffner, W., 1994. The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J 13, 2870-2875.
Himeno, S., Yanagiya, T., Fujishiro, H., 2009. The role of zinc transporters in cadmium and manganese transport in mammalian cells. Biochimie 91, 1218-1222.
Ho, B.Y., Wu, Y.M., Chang, K.J., Pan, T.M., 2011. Dimerumic acid inhibits SW620 cell invasion by attenuating H(2)O(2)-mediated MMP-7 expression via JNK/C-Jun and ERK/C-Fos activation in an AP-1-dependent manner. Int J Biol Sci 7, 869-880.
Hurlin, P.J., Foley, K.P., Ayer, D.E., Eisenman, R.N., Hanahan, D., Arbeit, J.M., 1995. Regulation of Myc and Mad during epidermal differentiation and HPV-associated tumorigenesis. Oncogene 11, 2487-2501.
Inaba, T., Kobayashi, E., Suwazono, Y., Uetani, M., Oishi, M., Nakagawa, H., Nogawa, K., 2005. Estimation of cumulative cadmium intake causing Itai-itai disease. Toxicol Lett 159, 192-201.
Jin, P., Ringertz, N.R., 1990. Cadmium induces transcription of proto-oncogenes c-jun and c-myc in rat L6 myoblasts. J Biol Chem 265, 14061-14064.
Jing, Y., Liu, L.Z., Jiang, Y., Zhu, Y., Guo, N.L., Barnett, J., Rojanasakul, Y., Agani, F., Jiang, B.H., 2012. Cadmium increases HIF-1 and VEGF expression through ROS, ERK, and AKT signaling pathways and induces malignant transformation of human bronchial epithelial cells. Toxicol Sci 125, 10-19.
Kellen, E., Zeegers, M.P., Hond, E.D., Buntinx, F., 2007. Blood cadmium may be associated with bladder carcinogenesis: the Belgian case-control study on bladder cancer. Cancer Detect Prev 31, 77-82.
Kim, B.Y., Kwak, S.Y., Yang, J.S., Han, Y.H., 2011. Phosphorylation and stabilization of c-Myc by NEMO renders cells resistant to ionizing radiation through up-regulation of gamma-GCS. Oncol Rep 26, 1587-1593.
Kim, S.D., Moon, C.K., Eun, S.Y., Ryu, P.D., Jo, S.A., 2005. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis. Biochem Biophys Res Commun 328, 326-334.
Kimura, M., Otaki, N., Yoshiki, S., Suzuki, M., Horiuchi, N., 1974. The isolation of metallothionein and its protective role in cadmium poisoning. Arch Biochem Biophys 165, 340-348.
Klaassen, C.D., Liu, J., Diwan, B.A., 2009. Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238, 215-220.
Kondo, T., Higashiyama, Y., Goto, S., Iida, T., Cho, S., Iwanaga, M., Mori, K., Tani, M., Urata, Y., 1999. Regulation of gamma-glutamylcysteine synthetase expression in response to oxidative stress. Free Radic Res 31, 325-334.
Kondoh, M., Araragi, S., Sato, K., Higashimoto, M., Takiguchi, M., Sato, M., 2002. Cadmium induces apoptosis partly via caspase-9 activation in HL-60 cells. Toxicology 170, 111-117.
Kuo, P.C., Abe, K.Y., Schroeder, R.A., 1996. Interleukin-1-induced nitric oxide production modulates glutathione synthesis in cultured rat hepatocytes. Am J Physiol 271, C851-862.
Lavrovsky, Y., Schwartzman, M.L., Levere, R.D., Kappas, A., Abraham, N.G., 1994. Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc Natl Acad Sci U S A 91, 5987-5991.
Lee, P.J., Jiang, B.H., Chin, B.Y., Iyer, N.V., Alam, J., Semenza, G.L., Choi, A.M., 1997. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 272, 5375-5381.
Lian, S., Xia, Y., Khoi, P.N., Ung, T.T., Yoon, H.J., Kim, N.H., Kim, K.K., Jung, Y.D., 2015. Cadmium induces matrix metalloproteinase-9 expression via ROS-dependent EGFR, NF-small ka, CyrillicB, and AP-1 pathways in human endothelial cells. Toxicology 338, 104-116.
Liao, Y.J., Bai, H.Y., Li, Z.H., Zou, J., Chen, J.W., Zheng, F., Zhang, J.X., Mai, S.J., Zeng, M.S., Sun, H.D., Pu, J.X., Xie, D., 2014. Longikaurin A, a natural ent-kaurane, induces G2/M phase arrest via downregulation of Skp2 and apoptosis induction through ROS/JNK/c-Jun pathway in hepatocellular carcinoma cells. Cell Death Dis 5, e1137.
Lichtlen, P., Wang, Y., Belser, T., Georgiev, O., Certa, U., Sack, R., Schaffner, W., 2001. Target gene search for the metal-responsive transcription factor MTF-1. Nucleic Acids Res 29, 1514-1523.
Lloyd, D.R., Phillips, D.H., 1999. Oxidative DNA damage mediated by copper(II), iron(II) and nickel(II) fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links. Mutat Res 424, 23-36.
Lopez, E., Figueroa, S., Oset-Gasque, M.J., Gonzalez, M.P., 2003. Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol 138, 901-911.
Meloni, G., Zovo, K., Kazantseva, J., Palumaa, P., Vasak, M., 2006. Organization and assembly of metal-thiolate clusters in epithelium-specific metallothionein-4. J Biol Chem 281, 14588-14595.
Minden, A., Lin, A., Claret, F.X., Abo, A., Karin, M., 1995. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81, 1147-1157.
Morales, A., Miranda, M., Sanchez-Reyes, A., Colell, A., Biete, A., Fernandez-Checa, J.C., 1998. Transcriptional regulation of the heavy subunit chain of gamma-glutamylcysteine synthetase by ionizing radiation. FEBS Lett 427, 15-20.
Muller, L., Abel, J., Ohnesorge, F.K., 1986. Absorption and distribution of cadmium (Cd), copper and zinc following oral subchronic low level administration to rats of different binding forms of cadmium (Cd-acetate, Cd-metallothionein, Cd-glutathione). Toxicology 39, 187-195.
Ognjanovic, B., Zikic, R.V., Stajn, A., Saicic, Z.S., Kostic, M.M., Petrovic, V.M., 1995. The effects of selenium on the antioxidant defense system in the liver of rats exposed to cadmium. Physiol Res 44, 293-300.
Oh, S.H., Lim, S.C., 2006. A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation. Toxicol Appl Pharmacol 212, 212-223.
Ortega-Villasante, C., Hernandez, L.E., Rellan-Alvarez, R., Del Campo, F.F., Carpena-Ruiz, R.O., 2007. Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytol 176, 96-107.
Paakko, P., Kokkonen, P., Anttila, S., Kalliomaki, P.L., 1989. Cadmium and chromium as markers of smoking in human lung tissue. Environ Res 49, 197-207.
Park, E.J., Lim, J.H., Nam, S.I., Park, J.W., Kwon, T.K., 2010. Rottlerin induces heme oxygenase-1 (HO-1) up-regulation through reactive oxygen species (ROS) dependent and PKC delta-independent pathway in human colon cancer HT29 cells. Biochimie 92, 110-115.
Pietruska, J.R., Liu, X., Smith, A., McNeil, K., Weston, P., Zhitkovich, A., Hurt, R., Kane, A.B., 2011. Bioavailability, intracellular mobilization of nickel, and HIF-1alpha activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticles. Toxicol Sci 124, 138-148.
Radtke, F., Heuchel, R., Georgiev, O., Hergersberg, M., Gariglio, M., Dembic, Z., Schaffner, W., 1993. Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J 12, 1355-1362.
Ragan, H.A., Mast, T.J., 1990. Cadmium inhalation and male reproductive toxicity. Rev Environ Contam Toxicol 114, 1-22.
Rana, S.V., Verma, S., 1996. Protective effects of GSH, vitamin E, and selenium on lipid peroxidation in cadmium-fed rats. Biol Trace Elem Res 51, 161-168.
Ratan, R.R., Murphy, T.H., Baraban, J.M., 1994. Macromolecular synthesis inhibitors prevent oxidative stress-induced apoptosis in embryonic cortical neurons by shunting cysteine from protein synthesis to glutathione. J Neurosci 14, 4385-4392.
Ruiz-Ramos, R., Lopez-Carrillo, L., Rios-Perez, A.D., De Vizcaya-Ruiz, A., Cebrian, M.E., 2009. Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-kappaB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res 674, 109-115.
Ryu, M.S., Lichten, L.A., Liuzzi, J.P., Cousins, R.J., 2008. Zinc transporters ZnT1 (Slc30a1), Zip8 (Slc39a8), and Zip10 (Slc39a10) in mouse red blood cells are differentially regulated during erythroid development and by dietary zinc deficiency. J Nutr 138, 2076-2083.
Sakamuro, D., Prendergast, G.C., 1999. New Myc-interacting proteins: a second Myc network emerges. Oncogene 18, 2942-2954.
Schroeter, H., Spencer, J.P., Rice-Evans, C., Williams, R.J., 2001. Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J 358, 547-557.
Schwartz, G.G., Reis, I.M., 2000. Is cadmium a cause of human pancreatic cancer? Cancer Epidemiol Biomarkers Prev 9, 139-145.
Shah, K., Nahakpam, S., 2012. Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars. Plant Physiol Biochem 57, 106-113.
Shih, C.M., Ko, W.C., Wu, J.S., Wei, Y.H., Wang, L.F., Chang, E.E., Lo, T.Y., Cheng, H.H., Chen, C.T., 2004. Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts. J Cell Biochem 91, 384-397.
Siebenlist, U., Hennighausen, L., Battey, J., Leder, P., 1984. Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in Burkitt lymphoma. Cell 37, 381-391.
Singhal, R.K., Anderson, M.E., Meister, A., 1987. Glutathione, a first line of defense against cadmium toxicity. FASEB J 1, 220-223.
Smirnova, I.V., Bittel, D.C., Ravindra, R., Jiang, H., Andrews, G.K., 2000. Zinc and cadmium can promote rapid nuclear translocation of metal response element-binding transcription factor-1. J Biol Chem 275, 9377-9384.
Soltaninassab, S.R., Sekhar, K.R., Meredith, M.J., Freeman, M.L., 2000. Multi-faceted regulation of gamma-glutamylcysteine synthetase. J Cell Physiol 182, 163-170.
Souza, V., Escobar Md Mdel, C., Gomez-Quiroz, L., Bucio, L., Hernandez, E., Cossio, E.C., Gutierrez-Ruiz, M.C., 2004. Acute cadmium exposure enhances AP-1 DNA binding and induces cytokines expression and heat shock protein 70 in HepG2 cells. Toxicology 197, 213-228.
Srisook, K., Cha, Y.N., 2005. Super-induction of HO-1 in macrophages stimulated with lipopolysaccharide by prior depletion of glutathione decreases iNOS expression and NO production. Nitric Oxide 12, 70-79.
Srisook, K., Han, S.S., Choi, H.S., Li, M.H., Ueda, H., Kim, C., Cha, Y.N., 2006. CO from enhanced HO activity or from CORM-2 inhibits both O2- and NO production and downregulates HO-1 expression in LPS-stimulated macrophages. Biochem Pharmacol 71, 307-318.
Stohs, S.J., Bagchi, D., Hassoun, E., Bagchi, M., 2000. Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 19, 201-213.
Suthanthiran, M., Anderson, M.E., Sharma, V.K., Meister, A., 1990. Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci U S A 87, 3343-3347.
Szuster-Ciesielska, A., Stachura, A., Slotwinska, M., Kaminska, T., Sniezko, R., Paduch, R., Abramczyk, D., Filar, J., Kandefer-Szerszen, M., 2000. The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures. Toxicology 145, 159-171.
Tang, W., Sadovic, S., Shaikh, Z.A., 1998. Nephrotoxicity of cadmium-metallothionein: protection by zinc and role of glutathione. Toxicol Appl Pharmacol 151, 276-282.
Tsai, J.S., Chao, C.H., Lin, L.Y., 2016. Cadmium Activates Multiple Signaling Pathways That Coordinately Stimulate Akt Activity to Enhance c-Myc mRNA Stability. PLoS One 11, e0147011.
van Haaften, R.I., Haenen, G.R., Evelo, C.T., Bast, A., 2003. Effect of vitamin E on glutathione-dependent enzymes. Drug Metab Rev 35, 215-253.
Vasak, M., Meloni, G., 2017. Mammalian Metallothionein-3: New Functional and Structural Insights. Int J Mol Sci 18.
Waisberg, M., Joseph, P., Hale, B., Beyersmann, D., 2003. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192, 95-117.
Wang, Y., Wu, Y., Luo, K., Liu, Y., Zhou, M., Yan, S., Shi, H., Cai, Y., 2013. The protective effects of selenium on cadmium-induced oxidative stress and apoptosis via mitochondria pathway in mice kidney. Food Chem Toxicol 58, 61-67.
Wild, A.C., Moinova, H.R., Mulcahy, R.T., 1999. Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem 274, 33627-33636.
Wild, A.C., Mulcahy, R.T., 2000. Regulation of gamma-glutamylcysteine synthetase subunit gene expression: insights into transcriptional control of antioxidant defenses. Free Radic Res 32, 281-301.
Yachie, A., Niida, Y., Wada, T., Igarashi, N., Kaneda, H., Toma, T., Ohta, K., Kasahara, Y., Koizumi, S., 1999. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 103, 129-135.
Yang, J.L., Chao, J.I., Lin, J.G., 1996. Reactive oxygen species may participate in the mutagenicity and mutational spectrum of cadmium in Chinese hamster ovary-K1 cells. Chem Res Toxicol 9, 1360-1367.
Yang, M., Chitambar, C.R., 2008. Role of oxidative stress in the induction of metallothionein-2A and heme oxygenase-1 gene expression by the antineoplastic agent gallium nitrate in human lymphoma cells. Free Radic Biol Med 45, 763-772.
Yang, P.M., Chen, H.C., Tsai, J.S., Lin, L.Y., 2007. Cadmium induces Ca2+-dependent necrotic cell death through calpain-triggered mitochondrial depolarization and reactive oxygen species-mediated inhibition of nuclear factor-kappaB activity. Chem Res Toxicol 20, 406-415.
Yang, P.M., Chiu, S.J., Lin, L.Y., 2005. Differential effects of salen and manganese-salen complex (EUK-8) on the regulation of cellular cadmium uptake and toxicity. Toxicol Sci 85, 551-559.
Yang, Y.C., Lii, C.K., Lin, A.H., Yeh, Y.W., Yao, H.T., Li, C.C., Liu, K.L., Chen, H.W., 2011. Induction of glutathione synthesis and heme oxygenase 1 by the flavonoids butein and phloretin is mediated through the ERK/Nrf2 pathway and protects against oxidative stress. Free Radic Biol Med 51, 2073-2081.
Yu, C.W., Chen, H.C., Lin, L.Y., 1998. Transcription of metallothionein isoform promoters is differentially regulated in cadmium-sensitive and -resistant CHO cells. J Cell Biochem 68, 174-185.
Zhang, B., Egli, D., Georgiev, O., Schaffner, W., 2001. The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals. Mol Cell Biol 21, 4505-4514.
Zikic, V., Stajn, A.S., Ognjanovic, B.I., Pavlovic, S.Z., Saicic, Z.S., 1997. Activities of superoxide dismutase and catalase in erythrocytes and transaminases in the plasma of carps (Cyprinus carpio L.) exposed to cadmium. Physiol Res 46, 391-396.
Zitka, O., Skalickova, S., Gumulec, J., Masarik, M., Adam, V., Hubalek, J., Trnkova, L., Kruseova, J., Eckschlager, T., Kizek, R., 2012. Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett 4, 1247-1253.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *