帳號:guest(3.147.53.119)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉永傑
作者(外文):Liu, Yung-Chieh
論文名稱(中文):烏賊、軟絲與大王魷大腦視葉的形質測量與比較
論文名稱(外文):Comparison of morphological features of the optic lobes in the cuttlefish, oval squid, and giant squid
指導教授(中文):焦傳金
指導教授(外文):Chiao, Chuan-Chin
口試委員(中文):葉世榮
楊恩誠
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:104080510
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:103
中文關鍵詞:頭足類大腦視葉形態發育
外文關鍵詞:Cephalopodsoptic lobemorphologydevelopment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:70
  • 評分評分:*****
  • 下載下載:20
  • 收藏收藏:0
大腦視葉是頭足類的中樞神經系統中占有最大體積以及扮演重要角色的腦區,它負責處理來自眼球的視覺訊息、調控體色表現以及控制運動行為等。雖然我們對視葉的一般形態已經有基本的了解,但目前仍缺乏詳細且系統化的形質定量來描述頭足類視葉發育的形態變化。在此研究中,我們對虎斑烏賊 (Sepia pharaonis) 與萊氏擬烏賊 (Sepioteuthis lessoniana) 的大腦視葉以不同的影像技術─包括核磁共振影像、微電腦斷層掃描與組織螢光顯微影像─進行觀察。此外,一個稀有的大王魷魚 (Architeuthis dux)的大腦視葉也利用核磁共振影像方式進行定量研究,並與虎斑烏賊及萊氏擬烏賊的視葉做比較,以了解頭足類視葉在物種間的異同。
虎斑烏賊視葉的核磁共振掃描顯示在髓質中稱為「細胞小島 (cell islands)」的構造其實是連續的樹枝狀結構,而在虎斑烏賊跟萊氏擬烏賊視葉的神經構造定量中也發現,皮質跟髓質都會隨著動物從胚胎到成年的發育穩定地擴大,但是在髓質中心 (tangential zone) 的細胞小島密度卻會隨著發育持續降低,更有趣的是,在視葉中的神經細胞核會隨著發育而增大,這些發現都表示大腦視葉在動物的生命週期中會持續地生長並重組,而這些形態上的改變提供了虎斑烏賊及萊氏擬烏賊從孵化後到成體間發生視覺行為改變的有利證據。
除此之外,在大王魷魚的研究中,我們發現大王魷的視葉與眼球體積比明顯地小於虎斑烏賊及萊氏擬烏賊,但大王魷大腦視葉的視覺訊息處理區域(意即皮質)發育十分良好,相較而言,大王魷視葉的視覺行為整合中樞(意即髓質)與其他頭足類相比明顯小很多。這些結果支持了大王魷的腦結構並非與其巨大眼睛成等比例演化,且因為不需要如淺海頭足物種那樣展現複雜的視覺行為(例如:虎斑烏賊及萊氏擬烏賊的動態體色變化與視覺溝通行為),因此視葉髓質的體積相對較小。
The optic lobe is the largest brain area within the central nervous system of cephalopods and it plays important roles in the processing of visual information, the regulation of body patterning, and locomotive behavior. Despite the understanding in the general morphology of the optic lobe, a detailed and systematic characterization of its morphological development has never been reported. In the present study, the development of the optic lobe in the cuttlefish Sepia pharaonis and the oval squid Sepioteuthis lessoniana were carefully examined using various imaging techniques, including magnetic resonance imaging (MRI), micro computed tomography (micro-CT), and histological fluorescent imaging. In addition, the optic lobe from a rare sample of the second largest cephalopod, the giant squid Architeuthis dux, was also studied with MRI and compared with those of cuttlefish and oval squids.
The MRI scan of a cuttlefish optic lobe revealed that the so called “cell islands” in the medulla of the cephalopod’s optic lobe (Young, 1962; 1974) are in fact a contiguous tree-like structure. Quantification of the neural organizational development of optic lobes in both cuttlefish and oval squids showed that the cortex and the medulla expand steadily from the embryonic stage to adulthood, but the density of cell islands in the tangential zone of the optic lobe decrease continuously in parallel. Interestingly, the size of the nuclei of cells within the optic lobe increases throughout development. These findings suggest that the optic lobe undergoes continuous growth and reorganization throughout the animal’s life. These morphological changes in the optic lobe are likely to be responsible for changes in the visuomotor behavior of oval squids and cuttlefish from hatching to adulthood.
In the study of the giant squid, it was evident that the volume ratio of the optic lobe to the eye in the giant squid is much smaller than that in the oval squid and the cuttlefish. Moreover, the visual information processing area in cephalopods, the cortex, is well developed in the giant squid. In comparison, the optic lobe medulla, the visuomotor integration center in cephalopods, is much less developed in the giant squid than other species. Collectively, the results support that the brain of giant squids has not evolved proportionally for performing complex tasks when compared with shallow water cephalopod species, such as the dynamic body pattering and visual communicative behavior in oval squids and cuttlefish.
致謝 4
中文摘要 6
Abstract 7
Chapter Ⅰ. Introduction 11
1-1 Overview 12
1-2 Cuttlefish are a good model animal for studying the development of the optic lobe 14
1-3 Oval squids are also a good model animal for studying the development of the optic lobe 15
1-4 Giant squids are unique for comparing the optic lobe morphology with other cephalopod species 16
1-5 Specific aims for the present study 17
Chapter Ⅱ. Materials and Methods 18
2-1 Animals 19
2-2 Structural imaging (MRI/micro-CT) 20
2-3 Histology and image acquisition 23
2-4 Measurement and analysis 25
Chapter Ⅲ. Neural organization of the optic lobe changes steadily from late embryonic stage to adulthood in cuttlefish Sepia pharaonis 29
3-1 Results 30
3-2 Discussion 36
Chapter Ⅵ. Morphological changes of the optic lobe from late embryonic to adult stages in oval squids Sepioteuthis lessoniana 45
4-1 Results 46
4-2 Discussion 48
Chapter Ⅴ. Mismatch between the eye and the optic lobe in the giant squid 54
5-1 Results 55
5-2 Discussion 56
Chapter Ⅵ. Overall conclusion and general discussion 58
References 61
Tables 71
Figures 75
Movies 102
Alexander GE, Delong MR, Strick PL. 1986. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357-381.
Bolstad KS, O'Shea S. 2004. Gut contents of a giant squid Architeuthis dux (Cephalopoda : Oegopsida) from New Zealand waters. New Zeal J Zool 31(1):15-21.
Bottjer SW, Miesner EA, Arnold AP. 1986. Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neurosci Lett 67(3):263-268.
Boycott BB. 1961. Functional organization of brain of cuttlefish Sepia officinalis. Proc R Soc Ser B-Bio 153(953):503-534.
Boyle PR. 1983. Cephalopod Life Cycles. London ; New York: Academic Press. v. p.
Breidbach O, Kutsch W. 1995. The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach: Birkhäuser Basel. VIII, 456 p.
Budelmann BU, Schipp R, Boletzky SV. 1997. Cephalopoda. In: Harrison FW, Kohn AJ, eds. Microsopic Anatomy of Invertebrates. Vol Mollusca II. New York: Wiley-Liss. p 119-414.
Butler AB, Hodos W. 2005. Comparative Vertebrate Neuroanatomy : Evolution and Adaptation. Hoboken, N.J.: Wiley-Interscience. xxi, 715 p. p.
Byrne RA, Griebel U, Wood JB, Mather JA. 2003. Squid say it with skin: a graphic model for skin displays in Caribbean reef squid (Sepioteuthis sepioidae). Free University of Berlin, Germany. 29-35 p.
Cajal SR. 1917. Contribucion al conocimiento de la retina y centros opticos de los cefalopodos. Trab Lab Invest, Biol Univ Madr 15:1-82.
Chichery R, Chanelet J. 1976. Motor and behavioral-responses obtained by stimulation with chronic electrodes of optic lobe of Sepia officinalis. Brain Res 105(3):525-532.
Chichery R, Chanelet J. 1978. Motor-responses obtained by stimulation of peduncle lobe of Sepia officinalis in chronic experiments. Brain Res 150(1):188-193.
Chung WS, Marshall J. 2014. Range-finding in squid using retinal deformation and image blur. Curr Biol 24(2):R64-R65.
Chung WS, Marshall NJ. 2017. Complex visual adaptations in squid for specific tasks in different environments. Front Physiol 8:1-16.
Claes MF. 1996. Functional morphology of the white bodies of the cephalopod mollusc Sepia officinalis. Acta Zool-Stockholm 77(2):173-190.
Clarke MR, Merrett N. 1972. Significance of squid, whale and other remains from stomachs of bottom-living deep-sea fish. J Mar Biol Assoc UK 52(3):599-603.
Clarke MR, Roper CFE. 1998. Cephalopods represented by beaks in the stomach of a sperm whale stranded at Paekakariki, North Island, New Zealand. S Afr J Marine Sci 20:129-133.
Constantine-Paton M, Law MI. 1978. Eye-specific termination bands in tecta of three-eyed frogs. Science 202(4368):639-641.
Darmaillacq AS, Chichery R, Shashar N, Dickel L. 2006. Early familiarization overrides innate prey preference in newly hatched Sepia officinalis cuttlefish. Anim Behav 71:511-514.
Darmaillacq AS, Lesimple C, Dickel L. 2008. Embryonic visual learning in the cuttlefish, Sepia officinalis. Anim Behav 76:131-134.
Dickel L, Boal JG, Budelmann BU. 2000. The effect of early experience on learning and memory in cuttlefish. Dev Psychobiol 36(2):101-110.
Fiore VG, Dolan RJ, Strausfeld NJ, Hirth F. 2015. Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity. Philos T Roy Soc B 370(1684).
Frösch D. 1971. Quantitative untersuchungen am zentralnervensystem der schlüpfstadien von zehn mediterranen Cephalopodenarten. Rev Suisse Zool 78:1069-1122.
Garamszegi LZ, Eens M. 2004. Brain space for a learned task: Strong intraspecific evidence for neural correlates of singing behavior in songbirds. Brain Res Rev 44(2-3):187-193.
Gleadall IG. 1990. Higher motor function in the brain of Octopus: The anterior basal lobe and its analogies with the vertebrate basal ganglia. Ann Appl Inf Sci 16:1-30.
Guerra A, Rodriguez-Navarro AB, Gonzalez AF, Romanek CS, Alvarez-Lloret P, Pierce GJ. 2010. Life-history traits of the giant squid Architeuthis dux revealed from stable isotope signatures recorded in beaks. Ices J Mar Sci 67(7):1425-1431.
Guibe M, Dickel L. 2011. Embryonic visual experience influences post-hatching shelter preference in cuttlefish. Vie Milieu 61(4):243-246.
Hanlon RT, Messenger JB. 1988. Adaptive coloration in young cuttlefish (Sepia officinalis L) - the morphology and development of body patterns and their relation to behavior. Philos T Roy Soc B 320(1200):437-487.
Hanlon RT, Messenger JB. 1996. Cephalopod Behaviour. Cambridge ; New York: University of Cambridge. xvi, 232 p.
Hubel DH, Wiesel TN. 1977. Functional architecture of macaque monkey visual-cortex. Proc R Soc Ser B-Bio 198(1130):1-59.
Jantzen TM, Havenhand JN. 2003. Reproductive behavior in the squid Sepioteuthis australis from South Australia: Ethogram of reproductive body patterns. Biol Bull-Us 204(3):290-304.
Johnson MH, Munakata Y, Gilmore RO. 2002. Brain Development and Cognition : A Reader. Oxford ; Malden, MA: Blackwell Publishers. xiv, 544 p.
Jozet-Alves C, Romagny S, Bellanger C, Dickel L. 2012a. Cerebral correlates of visual lateralization in Sepia. Behav Brain Res 234(1):20-25.
Jozet-Alves C, Viblanc VA, Romagny S, Dacher M, Healy SD, Dickel L. 2012b. Visual lateralization is task and age dependent in cuttlefish, Sepia officinalis. Anim Behav 83(6):1313-1318.
Kerbl A, Handschuh S, Nodl MT, Metscher B, Walzl M, Wanninger A. 2013. Micro-CT in cephalopod research: Investigating the internal anatomy of a sepiolid squid using a non-destructive technique with special focus on the ganglionic system. J Exp Mar Biol Ecol 447:140-148.
Kobayashi S, Takayama C, Ikeda Y. 2013. Ontogeny of the brain in oval squid Sepioteuthis lessoniana (Cephalopoda: Loliginidae) during the post-hatching phase. J Mar Biol Assoc Uk 93(6):1663-1671.
Koizumi M, Shigeno S, Mizunami M, Tanaka NK. 2016. Three-dimensional brain atlas of pygmy squid, Idiosepius paradoxus, revealing the largest relative vertical lobe system volume among the cephalopods. J Comp Neurol 524(10):2142-2157.
Landman NH, Cochran JK, Cerrato R, Mak J, Roper CFE, Lu CC. 2004. Habitat and age of the giant squid (Architeuthis sanctipauli) inferred from isotopic analyses. Mar Biol 144(4):685-691.
Lee MF, Lin CY, Chiao CC, Lu CC. 2016. Reproductive behavior and embryonic development of the pharaoh cuttlefish, Sepia pharaonis (Cephalopoda: Sepiidae). Zool Stud 55(41).
Lee YH, Yan HY, Chiao CC. 2010. Visual contrast modulates maturation of camouflage body patterning in cuttlefish (Sepia pharaonis). J Comp Psychol 124(3):261-270.
Lee YH, Yan HY, Chiao CC. 2012. Effects of early visual experience on the background preference in juvenile cuttlefish Sepia pharaonis. Biol Letters 8(5):740-743.
Lemaire J. 1970. Table de développement embryonnaire de Sepia officinalis L.(Mollusque Céphalopode). Bull Soc Zool Fr 95:773-782.
Lin CY, Tsai YC, Chiao CC. 2017. Quantitative analysis of dynamic body patterning reveals the grammar of visual signals during the reproductive behavior of the oval squid Sepioteuthis lessoniana. Front Ecol Evol 5(30).
Liu TH, Chiao CC. 2017. Mosaic organization of body pattern control in the optic lobe of squids. J Neurosci 37(4):768-780.
Liu YC, Liu TH, Su CH, Chiao CC. 2017. Neural organization of the optic lobe changes steadily from late embryonic stage to adulthood in cuttlefish Sepia pharaonis. Front Physiol 8(538).
Maddock L, Young JZ. 1987. Quantitative differences among the brains of Cephalopods. J Zool 212:739-767.
Marquis VF. 1989. Die embryonalentwicklung des nervensystems von Octopus vulgaris lam. (Cephalopoda, Octopoda), eine histologische analyse. Verh Naturforsch Ges Basel 99:23-75.
Meister G. 1972. Organogenese von Loligo vulgaris LAM: Mollusca, Cephalopoda, Teuthoidea, Myopsida, Loliginidae. Zool Jb Anat 89:247-300.
Messenger JB. 1967. The effects on locomotion of lesions to the visuo-motor system in octopus. Proc R Soc Lond B Biol Sci 167(1008):252-281.
Messenger JB. 1979. The nervous system of Loligo IV. The peduncle and olfactory lobes. Philos T Roy Soc B 285(1008):275-309.
Messenger JB. 2001. Cephalopod chromatophores: neurobiology and natural history. Biol Rev Camb Philos Soc 76(4):473-528.
Minton JW, Walsh LS, Lee PG, Forsythe JW. 2001. First multi-generation culture of the tropical cuttlefish Sepia pharaonis Ehrenberg, 1831. Aquacult Int 9(5):379-392.
Mooney TA, Lee WJ, Hanlon RT. 2010. Long-duration anesthetization of squid (Doryteuthis pealeii). Mar Freshw Behav Phy 43(4):297-303.
Moynihan M, Rodaniche AF. 1982. The behavior and natural history of the caribbean reef squid Sepioteuthis sepioidea with a consideration of social, signal, and defensive patterns for difficult and dangerous environments. Fortschritte der Verhaltensforschung 25:9-150.
Murray J, Hjort J, Appellöf A, Gran HH, Helland-Hansen B. 1912. The Depth of the Ocean: A General Account of the Modern Science of Oceanography Based Largely on the Scientific Researches of the Norwegian Steamer Michael Sars in the North Atlantic. London: Macmillan.
Nilsson DE, Warrant EJ, Johnsen S, Hanlon R, Shashar N. 2012. A unique advantage for giant eyes in giant squid. Curr Biol 22(8):683-688.
Nixon M, Young JZ. 2003. The Brains and Lives of Cephalopods. Oxford ; New York: Oxford University Press. xiv, 392 p.
O'Dor RK, Webber DM. 1986. The constraints on cephalopods - why squid arent fish. Can J Zool 64(8):1591-1605.
Overington SE, Morand-Ferron J, Boogert NJ, Lefebvre L. 2009. Technical innovations drive the relationship between innovativeness and residual brain size in birds. Anim Behav 78(4):1001-1010.
Packard A. 1972. Cephalopods and fish: The limits of convergence. Biol Rev Camb Philos Soc 47(2):241-307.
Packard A, Albergoni V. 1970. Relative growth, nucleic acid content and cell numbers of the brain in Octopus vulgaris (Lamarck). J Exp Biol 52(3):539-552.
Partridge JC. 2012. Sensory ecology: Giant eyes for giant predators? Curr Biol 22(8):R268-R270.
Poirier R, Chichery R, Dickel L. 2005. Early experience and postembryonic maturation of body patterns in cuttlefish (Sepia officinalis). J Comp Psychol 119(2):230-237.
Reiner A, Medina L, Veenman CL. 1998. Structural and functional evolution of the basal ganglia in vertebrates. Brain Res Rev 28(3):235-285.
Romagny S, Darmaillacq AS, Guibe M, Bellanger C, Dickel L. 2012. Feel, smell and see in an egg: emergence of perception and learning in an immature invertebrate, the cuttlefish embryo. J Exp Biol 215(Pt 23):4125-4130.
Roper CFE, Boss KJ. 1982. The giant squid. Sci Am 246(4):96-105.
Rosen H, Gilly W, Bell L, Abernathy K, Marshall G. 2015. Chromogenic behaviors of the Humboldt squid (Dosidicus gigas) studied in situ with an animal-borne video package. Journal of Experimental Biology 218(2):265-275.
Saidel WM. 1979. Relationship between photoreceptor terminations and centrifugal neurons in the optic lobe of Octopus. Cell Tissue Res 204(3):463-472.
Saidel WM. 1981. Evidence for visual mapping in the peduncle lobe of Octopus. Neurosci Lett 24(1):7-11.
Saidel WM. 1982. Connections of the octopus optic lobe: An HRP study. J Comp Neurol 206(4):346-358.
Santos MB, Pierce GJ, Hartmann MG, Smeenk C, Addink N, Kuiken T, Reid RJ, Patterson IAP, Lordan C, Rogan E, Mente E. 2002. Additional notes on stomach contents of sperm whales Physeter macrocephalus stranded in the north-east Atlantic. J Mar Biol Assoc UK 82(3):501-507.
Shigeno S, Kidokoro H, Tsuchiya K, Segawa S, Yamamoto M. 2001a. Development of the brain in the oegopsid squid, Todarodes pacificus: An atlas up to the hatching stage. Zool Sci 18(4):527-541.
Shigeno S, Kidokoro H, Tsuchiya K, Segawa S, Yamamoto M. 2001b. Development of the brain in the oegopsid squid, Todarodes pacificus: An atlas from hatchling to juvenile. Zool Sci 18(8):1081-1096.
Shigeno S, Ragsdale CW. 2015. The gyri of the octopus vertical lobe have distinct neurochemical identities. J Comp Neurol 523(9):1297-1317.
Shigeno S, Tsuchiya K, Segawa S. 2001c. Embryonic and paralarval development of the central nervous system of the loliginid squid Sepioteuthis lessoniana. J Comp Neurol 437(4):449-475.
Shigeno S, Yamamoto M. 2002. Organization of the nervous system in the pygmy cuttlefish, Idiosepius paradoxus Ortmann (Idiosepiidae, Cephalopoda). J Morphol 254(1):65-80.
Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NC, Zigmond MJ. 2003. Fundamental Neuroscience. Amsterdam ; San Diego, Calif. ; London: Academic Press. xix, 1426 p.
Strausfeld NJ. 1970. The optic lobes of Diptera. Philos T Roy Soc B 258(820):135-223.
Strausfeld NJ, Hirth F. 2013. Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340(6129):157-161.
Sumich JL. 2009. The Nekton. In: Kane K, ed. An Introduction to the Biology of Marine Life. 9th ed. Sudbury, Mass.: Jones and Bartlett Publishers. p 283-328.
Suzuki M, Kimura T, Ogawa H, Hotta K, Oka K. 2011. Chromatophore activity during natural pattern expression by the squid Sepioteuthis lessoniana: contributions of miniature oscillation. PLoS One 6(4):e18244.
Toll RB, Hess SC. 1981. A small, mature male Architeuthis (Cephalopoda: Oegopsida) with remarks on maturation in the family. Proc Biol Soc Wash 94(3):753-760.
Truman JW, Bate M. 1988. Spatial and temporal patterns of neurogenesis in the central nervous-system of Drosophila melanogaster. Dev Biol 125(1):145-157.
Tsai YL, Li CW, Hong TM, Ho JZ, Yang EC, Wu WY, Margaritondo G, Hsu ST, Ong EBL, Hwu Y. 2014. Firefly light flashing: oxygen supply mechanism. Phys Rev Lett 113(25).
Warrant EJ. 2006. Invertebrate vision in dim light. In: Warrant E, Nilsson DE, eds. Invertebrate Vision. Cambridge, UK ; New York: Cambridge University Press. p 83-126.
Warrant EJ, Locket NA. 2004. Vision in the deep sea. Biol Rev 79(3):671-712.
Wild E, Wollesen T, Haszprunar G, Hess M. 2015. Comparative 3D microanatomy and histology of the eyes and central nervous systems in coleoid cephalopod hatchlings. Org Divers Evol 15(1):37-64.
Winkelmann I, Campos PF, Strugnell J, Cherel Y, Smith PJ, Kubodera T, Allcock L, Kampmann ML, Schroeder H, Guerra A, Norman M, Finn J, Ingrao D, Clarke M, Gilbert MTP. 2013. Mitochondrial genome diversity and population structure of the giant squid Architeuthis: Genetics sheds new light on one of the most enigmatic marine species. P Roy Soc B-Biol Sci 280(1759).
Wollesen T, Loesel R, Wanninger A. 2009. Pygmy squids and giant brains: Mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations. J Neurosci Meth 179(1):63-67.
Wollesen T, Sukhsangchan C, Seixas P, Nabhitabhata J, Wanninger A. 2012. Analysis of neurotransmitter distribution in brain development of benthic and pelagic octopod cephalopods. J Morphol 273(7):776-790.
Yamamoto M, Shimazaki Y, Shigeno S. 2003. Atlas of the embryonic brain in the pygmy squid, Idiosepius paradoxus. Zoolog Sci 20(2):163-179.
Yang WT, Hixon RF, Turk PE, Krejci ME, Hulet WH, Hanlon RT. 1986. Growth, behavior, and sexual-maturation of the market squid, Loligo opalescens, cultured through the life cycle. Fish Bull 84(4):771-798.
Young JZ. 1962. Optic lobes of Octopus vulgaris. Philos T Roy Soc B 245(718):19-58.
Young JZ. 1974. The central nervous system of Loligo. I. The optic lobe. Philos T Roy Soc B 267(885):263-302.
Young JZ. 1976. The central nervous system of Loligo II. Subesophageal centres. Philos T Roy Soc B 274(930):101-167.
Young JZ. 1977. The central nervous system of Loligo III. Higher motor centres: basal supraoesophageal lobes. Philos T Roy Soc B 276(948):351-398.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *