帳號:guest(3.146.65.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許博詅
作者(外文):Hsu, Bo-Ling
論文名稱(中文):質子泵焦磷酸水解酶與雙磷酸鹽之結構與功能的研究
論文名稱(外文):The structural and functional studies of H+-PPase and bisphosphonates
指導教授(中文):孫玉珠
指導教授(外文):Sun, Yuh-Ju
口試委員(中文):孫玉珠
翁秉霖
蕭傳鐙
口試委員(外文):Sun, Yuh-Ju
Ong, Ping-Lin
Hsiao, Chwan-Deng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:104080509
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:48
中文關鍵詞:質子泵焦磷酸水解酶綠豆質子泵焦磷酸水解酶雙磷酸鹽結構
外文關鍵詞:proton pumppyrophosphataseVrH+-PPasebisphosphonatestructure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:18
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  離子泵焦磷酸水解酶(M-PPase)此酵素主要存在於植物、細菌、以及一些人類的致病菌中,主要藉由水解焦磷酸所產生的能量來驅使細胞膜或液胞膜外質子或鈉離子的轉運,M-PPase對這些物種生存於惡劣環境的耐受性上扮演一個關鍵的角色。至今為止,只有綠豆及海棲熱袍菌M-PPase的分子結構被解析出來,M-PPase的蛋白質序列具有高度的相似性,並且雙磷酸鹽具有專一性抑制M-PPase水解的能力,因此我們認為M-PPase是個具有潛力的藥物設計目標,希望以VrH+-PPase的結構為藥物設計的模板並以結晶的方法觀察VrH+-PPase與雙磷酸鹽的交互作用。
  雙磷酸鹽是一種常見治療骨質疏鬆的藥物,其主要的作用機制是藉由磷-碳-磷(P-C-P)鍵結來取代三磷酸腺苷(ATP)或焦磷酸(PPi)的磷-氧-磷(P-O-P)鍵結,進而抑制三磷酸腺苷水解酶的活性,如此一來,生物體產生的能量將會減少,使得破骨細胞漸漸的凋亡,以達到治療骨質疏鬆的效果,因此希望以舊藥新用的概念將雙磷酸鹽用於治療帶有M-PPase的致病菌所造成的疾病。
  本研究中,我們解析了VrH+-PPase與1-羥基-亞乙基-1,1-二膦酸(Etidronate;EA)、3-氨基-1-羥基-亞丙基-1,1-二膦酸(Pamidronate;PA)、4-氨基-1-羥基-亞丁基-1,1-二膦酸(Alendronate;AA)等三種雙磷酸鹽分子的複合體結構。由我們實驗室先前研究VrH+-PPase-IDP的複合體結構中VrH+-PPase擁有五個Mg2+協助IDP的結合,其中,Mg2和Mg3是與酵素活性相關的輔因子,Mg1和Mg4會與PPi形成Mg2PPi複合物,在VrH+-PPase-EA複合體結構中,EA側鏈的氧原子可以跟酵素的Mg3交互作用,而PA及AA側鏈的氮原子取代了基質的Mg1的功能,此結果顯示了不同的雙磷酸鹽在VrH+-PPase的結合位中會產生不同的方向性及交互作用力。此外,在水解焦磷酸活性抑制的實驗中可以發現,抑制效果的順序為,亞氨二磷酸(Imidodiphosphate;IDP)>EA>PA>AA,VrH+-PPase與IDP的結構中,具有較多的Mg2+ (5個Mg2+)來幫助彼此間緊密的交互作用,而且其化學結構與焦磷酸最為相似,或許可以更穩定的結合VrH+-PPase。
  Membrane-embedded pyrophosphatases (M-PPases) are found in plants, bacteria, and several human pathogens. These enzymes hydrolyze pyrophosphate and trigger the translocation of ions (H+ and/or Na+) across plasma/vacuolar membranes. M-PPases play a key role in survivability and stress tolerance. So the M-PPases are the potential target protein in the drug-design. Currently, only the structures of VrH+-PPase from Vigna radiata and TmNa+-PPase from Thermotoga maritima are solved. The protein sequences of M-PPases are highly conserved, and bisphosphonates are the type-specific inhibitors of M-PPases. Thus, M-PPases could be the potential target in the drug-design, and the structure of VrH+-PPase is utilized as a model for drug-design.
  Bisphosphonates are the common drugs to treat Osteoporosis. In the chemical structure, bisphosphonates are composed of P-C-P backbone which is similar to pyrophosphate or adenosine triphosphate (ATP). In addition, bisphosphonates competitively inhibit the hydrolytic activity of ATPases and M-PPases, which result in the reduction of energy production from ATPases. The osteoclast will then gradually undergo apoptosis to achieve the treatment of Osteoporosis. Take the concept of drug repurposing, bisphosphonates may be used to treat the diseases caused by M-PPase containing pathogens since bisphosphonates inhibit M-PPases on energy production.
  In this study, we solved the structures of VrH+-PPase with three various bisphosphonates, including Etidronate (EA), Pamidronate (PA) and Alendronate (AA). Comparing to the previous VrH+-PPase and imidodiphosphate (IDP) complex structure, the oxygen of EA side chain interacts with enzyme-type Mg3, and the nitrogen of PA and AA side chain occupies the substrate-type Mg1. It suggests that the orientations of those bisphosphonates in the VrH+-PPase binding pocket are different from IDP. In the study of hydrolytic inhibition, IDP has the best inhibitory ability and AA is the worst one. Combining the structural and inhibitory studies, we can conjecture VrH+-PPase has the most Mg2+ to interact with IDP and IDP is the most similar to pyrophosphate, so IDP can tightly interact with VrH+-PPase.
中文摘要 I
Abstract II
致謝 III
目錄 IV
第一章 1
簡介 1
1.1 離子泵酵素 (Ion-pumping enzyme) 1
1.2 膜鑲嵌型焦磷酸水解酶 (Membrane-embedded pyrophosphatase;M-PPase) 2
1.3 綠豆的質子泵焦磷酸水解酶 (VrH+-pyrophosphatase;VrH+-PPase) 3
1.4 雙磷酸鹽 (Bisphosphonate) 3
第二章 6
實驗方法與材料 6
2.1 酵母菌表現系統表現VrH+-PPase 6
2.2 微粒體的分離及蛋白的純化 7
2.3 製備酵母菌的液胞膜 8
2.4 點突變 9
2.5 蛋白質定量 10
2.6 SDS-PAGE和Western blotting 10
2.7 焦磷酸水解活性 11
2.8 質子轉運實驗 12
2.9 VrH+-PPase的結晶實驗 13
第三章 14
結果與討論 14
3.1 M-PPase蛋白質序列比對 14
3.2 VrH+-PPase質子轉運的能力 14
3.3 雙磷酸鹽抑制VrH+-PPase水解PPi的能力 15
3.4 VrH+-PPase-EA的複合體結構 16
3.5 VrH+-PPase-PA的複合體結構 17
3.6 VrH+-PPase-AA的複合體結構 18
3.7 比較VrH+-PPase-IDP,-EA,-PA,-AA複合體 18
3.8 VrH+-PPase的突變 19
第四章 22
結論 22
第五章 23
表格與圖片 23
第六章 46
參考文獻 46

1. Pedersen, B.P., et al., Crystal structure of the plasma membrane proton pump. Nature, 2007. 450(7172): p. 1111-4.
2. Futai, M., et al., Escherichia coli ATP synthase (F-ATPase): catalytic site and regulation of H+ translocation. J Exp Biol, 1992. 172: p. 443-9.
3. Dimroth, P., C. von Ballmoos, and T. Meier, Catalytic and mechanical cycles in F-ATP synthases. Fourth in the Cycles Review Series. EMBO Rep, 2006. 7(3): p. 276-82.
4. Dittrich, M., S. Hayashi, and K. Schulten, On the mechanism of ATP hydrolysis in F1-ATPase. Biophys J, 2003. 85(4): p. 2253-66.
5. Beyenbach, K.W. and H. Wieczorek, The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol, 2006. 209(Pt 4): p. 577-89.
6. Zuo, J., et al., Biochemical and functional characterization of the actin-binding activity of the B subunit of yeast vacuolar H+-ATPase. J Exp Biol, 2008. 211(Pt 7): p. 1102-8.
7. Holliday, L.S., et al., Interstitial collagenase activity stimulates the formation of actin rings and ruffled membranes in mouse marrow osteoclasts. Calcif Tissue Int, 2003. 72(3): p. 206-14.
8. Hernandez, A., et al., Intracellular proton pumps as targets in chemotherapy: V-ATPases and cancer. Curr Pharm Des, 2012. 18(10): p. 1383-94.
9. Gaxiola, R.A., K. Regmi, and K.D. Hirschi, Moving On Up: H(+)-PPase Mediated Crop Improvement. Trends Biotechnol, 2016. 34(5): p. 347-9.
10. Nakanishi, Y., et al., Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J Biol Chem, 2001. 276(10): p. 7654-60.
11. Serrano, A., et al., H+-PPases: yesterday, today and tomorrow. IUBMB Life, 2007. 59(2): p. 76-83.
12. Belogurov, G.A. and R. Lahti, A lysine substitute for K+. A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J Biol Chem, 2002. 277(51): p. 49651-4.
13. Lin, S.M., et al., Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature, 2012. 484(7394): p. 399-403.
14. Kellosalo, J., et al., The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science, 2012. 337(6093): p. 473-6.
15. Tsai, J.Y., et al., Proton/sodium pumping pyrophosphatases: the last of the primary ion pumps. Curr Opin Struct Biol, 2014. 27: p. 38-47.
16. Maeshima, M. and S. Yoshida, Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem, 1989. 264(33): p. 20068-73.
17. Kuo, S.Y., et al., Proton pumping inorganic pyrophosphatase of endoplasmic reticulum-enriched vesicles from etiolated mung bean seedlings. J Plant Physiol, 2005. 162(2): p. 129-38.
18. Motte, L., et al., Multimodal superparamagnetic nanoplatform for clinical applications: immunoassays, imaging & therapy. Faraday Discuss, 2011. 149: p. 211-25; discussion 227-45.
19. Gumienna-Kontecka, E., et al., Bisphosphonate chelating agents. Coordination ability of 1-phenyl-1-hydroxymethylene bisphosphonate towards Cu(2+) ions. J Inorg Biochem, 2002. 89(1-2): p. 13-7.
20. Maruotti, N., et al., Bisphosphonates: effects on osteoblast. Eur J Clin Pharmacol, 2012. 68(7): p. 1013-8.
21. David, P., et al., The bisphosphonate tiludronate is a potent inhibitor of the osteoclast vacuolar H(+)-ATPase. J Bone Miner Res, 1996. 11(10): p. 1498-507.
22. Gong, L., R.B. Altman, and T.E. Klein, Bisphosphonates pathway. Pharmacogenet Genomics, 2011. 21(1): p. 50-3.
23. Hsu, S.H., et al., Purification, characterization, and spectral analyses of histidine-tagged vacuolar H+-pyrophosphatase expressed in yeast. Botanical Studies, 2009. 50(3): p. 291-301.
24. Bornhorst, J.A. and J.J. Falke, Purification of proteins using polyhistidine affinity tags. Applications of Chimeric Genes and Hybrid Proteins, Pt A, 2000. 326: p. 245-254.
25. Asaoka, M., S. Segami, and M. Maeshima, Identification of the critical residues for the function of vacuolar H(+)-pyrophosphatase by mutational analysis based on the 3D structure. J Biochem, 2014. 156(6): p. 333-44.
26. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72: p. 248-54.
27. Ornstein, L., Disc Electrophoresis .I. Background and Theory. Annals of the New York Academy of Sciences, 1964. 121(A2): p. 321-&.
28. Davis, B.J., Disc Electrophoresis .2. Method and Application to Human Serum Proteins. Annals of the New York Academy of Sciences, 1964. 121(A2): p. 404-&.
29. Eibl, H. and W.E. Lands, A new, sensitive determination of phosphate. Anal Biochem, 1969. 30(1): p. 51-7.
30. Cools, A.A. and L.H. Janssen, Fluorescence response of acridine orange to changes in pH gradients across liposome membranes. Experientia, 1986. 42(8): p. 954-6.
31. Briskin, D.P. and I. Reynolds-Niesman, Determination of H/ATP Stoichiometry for the Plasma Membrane H-ATPase from Red Beet (Beta vulgaris L.) Storage Tissue. Plant Physiol, 1991. 95(1): p. 242-50.
32. Burkhart, B.M., et al., The conducting form of gramicidin A is a right-handed double-stranded double helix. Proc Natl Acad Sci U S A, 1998. 95(22): p. 12950-5.
33. Gordon-Weeks, R., et al., Structural aspects of the effectiveness of bisphosphonates as competitive inhibitors of the plant vacuolar proton-pumping pyrophosphatase. Biochem J, 1999. 337 ( Pt 3): p. 373-7.
34. Baykov, A.A., et al., Differential sensitivity of membrane-associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme. FEBS Lett, 1993. 327(2): p. 199-202.
35. Li, K.M., et al., Membrane pyrophosphatases from Thermotoga maritima and Vigna radiata suggest a conserved coupling mechanism. Nat Commun, 2016. 7: p. 13596.
36. Pan, Y.J., et al., The transmembrane domain 6 of vacuolar H(+)-pyrophosphatase mediates protein targeting and proton transport. Biochim Biophys Acta, 2011. 1807(1): p. 59-67.
37. Van, R.C., et al., Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase. Biochim Biophys Acta, 2005. 1709(1): p. 84-94.
38. Coxon, F.P., K. Thompson, and M.J. Rogers, Recent advances in understanding the mechanism of action of bisphosphonates. Curr Opin Pharmacol, 2006. 6(3): p. 307-12.
39. Charehbili, A., et al., Can Zoledronic Acid be Beneficial for Promoting Tumor Response in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy? J Clin Med, 2013. 2(4): p. 188-200.
40. Pitchaimani, A., et al., Photochemotherapeutic effects of UV-C on acridine orange in human breast cancer cells: potential application in anticancer therapy. Rsc Advances, 2014. 4(42): p. 22123-22128.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *