|
- Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike, pages 199-213. Springer Series in Statistics (Perspectives in Statistics). Springer. - Armstrong, J. S. (2001). Principles of forecasting: a handbook for researchers and practitioners, volume 30. Springer Science & Business Media. - Ashouri, M., Cai, K., Lin, F., and Shmueli, G. (2018). Assessing the value of an information system for developing predictive analytics: The case of forecasting school-level demand in taiwan. Service Science, 10(1):58-75. - Ashouri, M., Shmueli, G., and Sin, C.-Y. (2019). Tree-based methods for clustering time series using domain-relevant attributes. Journal of Business Analytics, pages 1-23. - Abfalg, J., Kroegel, H.-P., Kroger, P., Kunath, P., Pryakhin, A., and Renz, M. (2006). Similarity search on time series based on threshold queries. In EDBT, pages 276-294. Springer. - Athanasopoulos, G., Ahmed, R. A., and Hyndman, R. J. (2009). Hierarchical forecasts for australian domestic tourism. International Journal of Forecasting, 25(1):146- 166. - Australia, T. R. (2005). Travel by australians, september quarter 2005. Tourism Australia. - Berndt, D. J. and Clifford, J. (1994). Using dynamic time warping to and patterns in time series. In KDD workshop, volume 10, pages 359-370. Seattle. - Bertrand, P. and Goupil, F. (2000). Descriptive statistics for symbolic data. In Analysis of symbolic data, pages 106-124. Springer. - Bezdek, J. C. (2013). Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media. - Bhargava, A. (1986). On the theory of testing for unit roots in observed time series. The Review of Economic Studies, 53(3):369-384. - Bork, L. and Moller, S. V. (2015). Forecasting house prices in the 50 states using dynamic model averaging and dynamic model selection. International Journal of Forecasting, 31(1):63-78. - Chen, L. and Ng, R. (2004). On the marriage of lp-norms and edit distance. In Proceedings of the Thirtieth international conference on Very large data bases-Volume 30, pages 792-803. VLDB Endowment. - Chen, L., Ozsu, M. T., and Oria, V. (2005). Robust and fast similarity search for moving object trajectories. In Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pages 491-502. ACM. - Chen, Y., Nascimento, M. A., Ooi, B. C., and Tung, A. K. (2007). Spade: On shapebased pattern detection in streaming time series. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, pages 786-795. IEEE. - Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica: Journal of the Econometric Society, pages 591-605. - Coates, D. and Diggle, P. (1986). Tests for comparing two estimated spectral densities. Journal of Time Series Analysis, 7(1):7-20. - Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Journal of the Operational Research Society, 23(3):289-303. - Dasu, T., Swayne, D. F., and Poole, D. (2005). Grouping multivariate time series: A case study. In Proceedings of the IEEE Workshop on Temporal Data Mining: Algorithms, Theory and Applications, in conjunction with the Conference on Data Mining, Houston, pages 25-32. - Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. (2017). Language modeling with gated convolutional networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 933-941. JMLR. org. - De Gooijer, J. G. and Hyndman, R. J. (2006). 25 years of time series forecasting. International journal of forecasting, 22(3):443-473. - Diggle, P. J. (1990). Time series; a biostatistical introduction. Technical report. - Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and Keogh, E. (2008). Querying and mining of time series data: experimental comparison of representations and distance measures. Proceedings of the VLDB Endowment, 1(2):1542-1552. - Faloutsos, C., Ranganathan, M., and Manolopoulos, Y. (1994). Fast subsequence matching in time-series databases, volume 23. ACM. - Fliedner, G. (2001). Hierarchical forecasting: issues and use guidelines. Industrial Management & Data Systems, 101(1):5-12. - Flunkert, V., Salinas, D., and Gasthaus, J. (2017). Deepar: Probabilistic forecasting with autoregressive recurrent networks. arXiv preprint arXiv:1704.04110. - Fokianos, K. and Promponas, V. J. (2012). Biological applications of time series frequency domain clustering. Journal of Time Series Analysis, 33(5):744-756. - Fokianos, K. and Savvides, A. (2008). On comparing several spectral densities. Technometrics, 50(3):317-331. - Frentzos, E., Gratsias, K., and Theodoridis, Y. (2007). Index-based most similar trajectory search. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, pages 816-825. IEEE. - Gfferon, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems. " O'Reilly Media, Inc.". - Giordano, F., Rocca, M. L., and Parrella, M. L. (2017). Clustering complex time-series databases by using periodic components. Statistical Analysis and Data Mining: The ASA Data Science Journal, 10(2):89-106. - Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, pages 424-438. - Gross, C. W. and Sohl, J. E. (1990). Disaggregation methods to expedite product line forecasting. Journal of Forecasting, 9(3):233-254. - Hibon, M., Makridakis, S., and Ord, K. (1999). M3-competition. Retrieved October 14, 2016, https://flora.insead.edu/fichiersti_wp/inseadwp1999/99-70.pdf. - Holan, S. H. and Ravishanker, N. (2018). Time series clustering and classification via frequency domain methods. Wiley Interdisciplinary Reviews: Computational Statistics, 10(6):e1444. - Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., and Liu, H. H. (1998). The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. In Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, volume 454, pages 903-995. The Royal Society. - Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., and Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics & Data Analysis, 55(9):2579-2589. - Hyndman, R. J. and Athanasopoulos, G. (2014). Forecasting: principles and practice. OTexts. - Hyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts, Melbourne, Australia. - Jacoby, W. G. (2000). Loess:: a nonparametric, graphical tool for depicting relationships between variables. Electoral Studies, 19(4):577-613. - Jacques, J. and Preda, C. (2014). Functional data clustering: a survey. Advances in Data Analysis and Classi_cation, 8(3):231-255. - Jank, W. and Shmueli, G. (2009). Studying heterogeneity of price evolution in ebay auctions via functional clustering. Handbook of information systems series: Business computing, pages 237-261. - Jank, W. and Shmueli, G. (2010). Modeling online auctions, volume 91. John Wiley & Sons. - Kahn, K. B. (1998). Revisiting top-down versus bottom-up forecasting. The Journal of Business Forecasting, 17(2):14. - Kalpakis, K., Gada, D., and Puttagunta, V. (2001). Distance measures for effective clustering of arima time-series. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on, pages 273-280. IEEE. - Kaneko, T., Kameoka, H., Hiramatsu, K., and Kashino, K. (2017). Sequence-to-sequence voice conversion with similarity metric learned using generative adversarial networks. In INTERSPEECH, pages 1283-1287. - Khadivi, P. and Ramakrishnan, N. (2016). Wikipedia in the tourism industry: Forecasting demand and modeling usage behavior. In AAAI'16 Proceedings of the Thirtieth AAAI Conference on Arti_cial Intelligence, pages 4016-4021. - Kirshners, A. and Borisov, A. (2012). A comparative analysis of short time series processing methods. Information Technology and Management Science, 15(1):65-69. - Kumar, M., Patel, N. R., and Woo, J. (2002). Clustering seasonality patterns in the presence of errors. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 557-563. ACM. - Kunst, R. M. (2012). Econometric forecasting. Institute for Advanced Studies Vienna and University of Vienna. http://homepage. univie. ac. at/robert. kunst/progpres.pdf. - Lee, A. J., Lin, M.-C., Kao, R.-T., and Chen, K.-T. (2010). An effective clustering approach to stock market prediction. In PACIS, page 54. - Liao, T. W. (2005). Clustering of time series data|a survey. Pattern recognition, 38(11):1857-1874. - Liu, H., Ni, Z., and Li, J. (2006). Time series similar pattern matching based on empirical mode decomposition. In Intelligent Systems Design and Applications, 2006. ISDA'06. Sixth International Conference on, volume 1, pages 644-648. IEEE. - Liu, N., Ren, S., Choi, T.-M., Hui, C.-L., and Ng, S.-F. (2013). Sales forecasting for fashion retailing service industry: a review. Mathematical Problems in Engineering, 2013. - Makridakis, S. and Hibon, M. (2000). The m3-competition: results, conclusions and implications. International journal of forecasting, 16(4):451-476. - Mamula, M. (2015). Modelling and forecasting international tourism demand-evaluation of forecasting performance. International Journal of Business Administration, 6(3):102-112. - Moller-Levet, C. S., Klawonn, F., Cho, K.-H., and Wolkenhauer, O. (2003). Fuzzy clustering of short time-series and unevenly distributed sampling points. In International Symposium on Intelligent Data Analysis, pages 330-340. Springer. - Montgomery, D. C., Jennings, C. L., and Kulahci, M. (2015). Introduction to time series analysis and forecasting. John Wiley & Sons. - Morandat, F., Hill, B., Osvald, L., and Vitek, J. (2012). Evaluating the design of the r language. In European Conference on Object-Oriented Programming, pages 104-131. Springer. - Morse, M. D. and Patel, J. M. (2007). An effcient and accurate method for evaluating time series similarity. In Proceedings of the 2007 ACM SIGMOD international conference on Management of data, pages 569-580. ACM. - Ngueyep, R. and Serban, N. (2015). Large-vector autoregression for multilayer spatially correlated time series. Technometrics, 57(2):207-216. - Nie, D., Fu, Y., Zhou, J., Fang, Y., and Xia, H. (2010). Time series analysis based on enhanced nlcs. In Information Sciences and Interaction Sciences (ICIS), 2010 3rd International Conference on, pages 292-295. IEEE. - Papacharalampous, G. A., Tyralis, H., and Koutsoyiannis, D. (2017). Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes. Journal of Hydrology, 10. - Paterson, M. and Dancik, V. (1994). Longest common subsequences. Mathematical Foundations of Computer Science 1994, pages 127-142. - Pennings, C. L. and van Dalen, J. (2017). Integrated hierarchical forecasting. European Journal of Operational Research, 263(2):412-418. - Rani, S. and Sikka, G. (2012). Recent techniques of clustering of time series data: a survey. International Journal of Computer Applications, 52(15). - Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20:53-65. - Salinas, D., Flunkert, V., and Gasthaus, J. (2017). Deepar: Probabilistic forecasting with autoregressive recurrent networks. arXiv preprint arXiv:1704.04110. - Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of statistics, 6(2):461-464. - Shaw, C. and King, G. (1992). Using cluster analysis to classify time series. Physica D: Nonlinear Phenomena, 58(1-4):288-298. - Shmueli, G. and Lichtendahl, K. C. (2016). Practical Time Series Forecasting with R: A Hands-On Guide. Axelrod Schnall Publishers. - Shumway, R. H. (2003). Time-frequency clustering and discriminant analysis. Statistics & probability letters, 63(3):307-314. - Sigmund, M. and Ferstl, R. (2019). Panel vector autoregression in r with the package panelvar. The Quarterly Review of Economics and Finance. - Sims, C. A. (1980). Macroeconomics and reality. Econometrica: Journal of the Econometric Society, pages 1-48. - Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems, pages 3104-3112. - Vlachos, M., Kollios, G., and Gunopulos, D. (2002). Discovering similar multidimensional trajectories. In Data Engineering, 2002. Proceedings. 18th International Conference on, pages 673-684. IEEE. - Wagner, N., Michalewicz, Z., Schellenberg, S., Chiriac, C., and Mohais, A. (2011). Intelligent techniques for forecasting multiple time series in real-world systems. International Journal of Intelligent Computing and Cybernetics, 4(3):284-310. - Weatherford, L. R. and Kimes, S. E. (2003). A comparison of forecasting methods for hotel revenue management. International Journal of Forecasting, 19(3):401-415. - Wickramasuriya, S. L., Athanasopoulos, G., and Hyndman, R. J. (2018a). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, (just-accepted):1-45. - Wickramasuriya, S. L., Athanasopoulos, G., and Hyndman, R. J. (2018b). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, (just-accepted):1-45. - Witt, S. and Witt, C. (2000). Forecasting tourism demand: A review of empirical research. International Library of Critical Writings in Economics, 121(3):141-169. - Xiong, Y. and Yeung, D.-Y. (2002). Mixtures of arma models for model-based time series clustering. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on, pages 717-720. IEEE. - Yuksel, S. (2007). An integrated forecasting approach to hotel demand. Mathematical and Computer Modelling, 46(7):1063-1070. - Zakhary, A., El Gayar, N., and Atiya, A. F. (2008). A comparative study of the pickup method and its variations using a simulated hotel reservation data. ICGST International Journal on Arti_cial Intelligence and Machine Learning, 8:15-21. - Zeileis, A., Hothorn, T., and Hornik, K. (2008). Model-based recursive partitioning. Journal of Computational and Graphical Statistics, 17(2):492-514. - Zeileis, A., Leisch, F., Hornik, K., and Kleiber, C. (2001). strucchange. an r package for testing for structural change in linear regression models. - Zhang, L. and Zhang, B. (1997). A forward propagation learning algorithm of multilayered neural networks with feed-back connections. Journal of Software, 8(4):252-258. - Zhou, P.-Y. and Chan, K. C. (2014). A model-based multivariate time series clustering algorithm. In Pacifc-Asia Conference on Knowledge Discovery and Data Mining, pages 805-817. Springer.
|