帳號:guest(18.118.24.13)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳映君
作者(外文):Wu, Ying-Chun
論文名稱(中文):穿戴式腦波儀日常應用持續使用意願之實證研究
論文名稱(外文):An Empirical Study of the Intention to Continuously Use Wearable EEG Applications
指導教授(中文):林福仁
指導教授(外文):Lin, Fu-Ren
口試委員(中文):王俊程
許裴舫
口試委員(外文):Wang, Jyun-Cheng
Hsu, Pei-Fang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:服務科學研究所
學號:104078509
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:74
中文關鍵詞:穿戴式腦波儀腦波儀日常應用穿戴式科技自我監測情境模擬原型測試持續使用意願使用情境回饋功能
外文關鍵詞:Wearable EEGdaily routine EEG applicationswearable technologyself-monitoringscenario-based surveyprototype testingintention to continuous usecontextfunction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:329
  • 評分評分:*****
  • 下載下載:27
  • 收藏收藏:0
隨著自我監測健康的風潮逐漸盛行,穿戴式腦波儀是唯一可用以量測人們大腦活動與心智狀態的簡便型穿戴式裝置,除了娛樂與訓練用途的日常應用,卻少有用於自我健康管理的應用成功打入一般大眾市場。根據服務主導邏輯的觀點,產品只有在被使用的過程中方能產生其價值,稱之為使用價值,這個觀點引起了本論文的研究動機——本研究將作為未來發展穿戴式腦波儀之長期監測健康應用的參考,輔助研發、設計出更理想的未來應用。

本研究根據目前穿戴式腦波儀相關應用,歸納得知「使用情境」與「回饋功能」為兩大影響使用者使用意願的特性,並發展出四個使用穿戴式腦波儀的情境故事,並進行一份利用情境故事模擬的線上問卷,這份問卷調查了參與者願意持續使用情境故事所描寫之穿戴式腦波儀應用的意願,以及一些與個人特質或認知有關之因素的調節作用,藉以了解「使用情境」與「回饋功能」如何影響人們持續使用不同穿戴式腦波儀相關應用之意願,及可能的調節變數與其影響,我們將此問卷定位為設計流程中的早期原型測試之用。

本研究發現:一般大眾並無偏好使用特定的穿戴式腦波儀應用,但對於具備特定特徵或認知(包括:曾經使用過其他自我監測穿戴式裝置並有正面經驗、不同程度的感知健康和隱私風險)的人而言,會偏好持續使用特定應用,因此,上述三種特徵可以作為區分不同使用者族群的依據,另外根據研究發現,我們建議穿戴式腦波儀應用之研發與設計人員,未來在針對不同使用族群發展應用時,應同時將「使用情境」與「回饋功能」納入設計考量,才能更有效地發展出符合其需求之成果。
With the trend of health self-monitoring, wearable EEG (electroencephalography) is the only modality to human brain activity and mental status. Except for entertaining and training purposes, very few EEG applications penetrate the market as self-health management solutions. From the perspective of Service-dominant Logic, products have value only when being used, which is called value-in-use. The motivation of the study is to assist design process to develop desirable wearable EEG applications for long-term health monitoring.

Based on current development of wearable EEG applications, four scenarios of using wearable EEG were composed based on two dimensions of features: context and feedback generation function. Then, an online scenario-based survey was conducted and served as prototype testing in the early stage of the iterative design process. The survey examined individual person’s intention to continuously use wearable EEG applications of the four scenarios. Furthermore, it also examined the influence of several moderators related to users’ characteristics and perception.

The results show that there are no significant differences in intention to continuous use among four scenarios, in general. However, people with positive prior experiences in using other self-tracking wearables and different levels of perceived health and privacy risks developed specific preferences to different scenarios of using wearable EEG applications. The findings suggest that wearable EEG providers should take context and application function into account simultaneously when designing wearable EEG applications for specific user segments to better fit their needs.
摘要 I
Abstract II
謝誌 III
Table of Content IV
List of Table VI
List of Figure VII
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
2.1 Scenario-based Design 5
2.2 Intention to Continuous Use: Information System (IS) v.s. User-oriented Design Perspectives 6
2.3 EEG Technology 8
2.4 Context and Context-aware Applications 10
2.5 Gap and Motivation 12
Chapter 3 Research Model 13
3.1 Context and Intention to Continuous Use 15
3.2 Function and Intention to Continuous Use 15
3.3 The Interaction of Context and Function toward Intention to Continuous Use 16
3.4 Prior Experience of Self-tracking Wearables 17
3.5 Personal Innovativeness 18
3.6 Self-efficacy 19
3.7 Perceived Risk 20
3.7.1 Perceived Health Risk 20
3.7.2 Perceived Privacy Risk 21
3.8 Social Influence 22
Chapter 4 Research Method 24
4.1 Experimental Design and Scenario Development 24
4.2 Measurements 26
4.3 Research Sample 28
4.4 Data Collection Procedure 29
Chapter 5 Data Analysis and Results 30
5.1 Descriptive Data Analysis 30
5.2 Validity and Reliability 31
5.3 Hypothesis Testing 33
5.3.1 The effect of Context, Function on the Intention to Use (H1 and H2) 33
5.3.2 Interaction between Context and Function on the Intention to Use (H3) 34
5.3.3 Moderating Effects 35
5.3.3.1 Prior Experience of Self-tracking Wearables (H4a-c) 36
5.3.3.2 Personal Innovativeness (H5a-c) 39
5.3.3.3 Self-efficacy (H6a-c) 39
5.3.3.4 Perceived Risk (H7a-c) 40
5.3.3.4 Social Influence (H8a-c) 44
Chapter 6 Discussion 46
6.1 Explanation of the Effects of Context and Function 46
6.2 Explanation of the Moderating Effects 48
6.3 Explanation of the Main Effects of Moderators 49
6.4 Limitation and Future Research 50
Chapter 7 Conclusion 51
References 52
Appendices 61
Appendix A. Scenarios 61
Appendix B. Questionnaire 63
Abowd, D., Dey, A. K., Orr, R., & Brotherton, J. (1998). Context-awareness in wearable and ubiquitous computing. Virtual Reality, 3(3), 200-211.
Abowd, D., Dey, A. K., Orr, R., & Brotherton, J. (1998). Context-awareness in wearable and ubiquitous computing. Virtual Reality, 3(3), 200-211.
Abowd, G., Dey, A., Brown, P., Davies, N., Smith, M., & Steggles, P. (1999). Towards a better understanding of context and context-awareness. In Handheld and ubiquitous computing (pp. 304-307). Springer Berlin/Heidelberg.
Adamczyk, P. D., & Bailey, B. P. (2004, April). If not now, when?: the effects of interruption at different moments within task execution. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 271-278). ACM.
Agarwal, R., & Karahanna, E. (2000). Time flies when you're having fun: Cognitive absorption and beliefs about information technology usage. MIS quarterly, 665-694.
Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information systems research, 9(2), 204-215.
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Action control (pp. 11-39). Springer Berlin Heidelberg.
Ajzen, I., & Fishbein, M. (1975). Belief, attitude, intention and behavior: An introduction to theory and research.
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour.
Allison, B. Z., Dunne, S., Leeb, R., Millán, J. D. R., & Nijholt, A. (2012). Recent and upcoming BCI progress: overview, analysis, and recommendations. In Towards Practical Brain-Computer Interfaces (pp. 1-13). Springer Berlin Heidelberg.
Amberg, M., & Wehrmann, J. (2002). A framework for the classification of situation dependent services. AMCIS 2002 Proceedings, 253.
Bailey, B. P., & Iqbal, S. T. (2008). Understanding changes in mental workload during execution of goal-directed tasks and its application for interruption management. ACM Transactions on Computer-Human Interaction (TOCHI), 14(4), 21.
Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review, 84(2), 191.
Belk, R. W. (1975). Situational variables and consumer behavior. Journal of Consumer research, 2(3), 157-164.
Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS quarterly, 351-370.
Bickmore, T. W., Mauer, D., & Brown, T. (2009). Context awareness in a handheld exercise agent. Pervasive and mobile computing, 5(3), 226-235.
Brown, P. J. (1998). Triggering information by context. Personal Technologies, 2(1), 18-27.
Burgess, A. (2002). Comparing national responses to perceived health risks from mobile phone masts. Health, risk & society, 4(2), 175-188.
Buttussi, F., & Chittaro, L. (2008). MOPET: A context-aware and user-adaptive wearable system for fitness training. Artificial Intelligence in Medicine, 42(2), 153-163.
Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56, 81-105.
Chi, Y. M., Jung, T. P., & Cauwenberghs, G. (2010). Dry-contact and noncontact biopotential electrodes: Methodological review. IEEE reviews in biomedical engineering, 3, 106-119.
Chin, W. W. (2003). Issues and opinions on structural equation modeling.
Choe, E. K., & Lee, B. (2015). Characterizing visualization insights from quantified selfers' personal data presentations. IEEE computer graphics and applications, 35(4), 28-37.
Chua, A. Y., Balkunje, R. S., & Goh, D. H. L. (2011, March). The influence of user-context on mobile information needs. In Advanced Information Networking and Applications (WAINA), 2011 IEEE Workshops of International Conference on (pp. 721-726). IEEE.
Church, K., & Smyth, B. (2009, February). Understanding the intent behind mobile information needs. In Proceedings of the 14th international conference on Intelligent user interfaces (pp. 247-256). ACM. Chua, A. Y., Balkunje, R. S., & Goh, D. H. L. (2011, March). The influence of user-context on mobile information needs. In Advanced Information Networking and Applications (WAINA), 2011 IEEE Workshops of International Conference on (pp. 721-726). IEEE. 
Cocosila, M., Archer, N., & Yuan, Y. (2009). Early investigation of new information technology acceptance: A perceived risk-motivation model. Communications of the Association for Information Systems, 25(1), 30.
Council, D. (2005). The ‘double diamond’design process model. Design Council.
Cunningham, M. S. (1967). The major dimensions of perceived risk. Risk taking and information handling in consumer behavior.
Dabholkar, P. A. (1996). Consumer evaluations of new technology-based self-service options: an investigation of alternative models of service quality. International Journal of research in Marketing, 13(1), 29-51.
Davies, N., Mitchell, K., Cheverst, K., & Blair, G. (1998, May). Developing a context sensitive tourist guide. In 1st Workshop on Human Computer Interaction with Mobile Devices, GIST Technical Report G98-1 (Vol. 1).
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
De Guinea, A. O., & Markus, M. L. (2009). Why break the habit of a lifetime? Rethinking the roles of intention, habit, and emotion in continuing information technology use. Mis Quarterly, 433-444.
Dee Dickerson, M., & Gentry, J. W. (1983). Characteristics of adopters and non-adopters of home computers. Journal of Consumer research, 10(2), 225-235.
Dey, A. K., Abowd, G. D., & Salber, D. (2001). A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Human-computer interaction, 16(2), 97-166.
Dey, A. K., Salber, D., Abowd, G. D., & Futakawa, M. (1999, October). The conference assistant: Combining context-awareness with wearable computing. In Wearable Computers, 1999. Digest of Papers. The Third International Symposium on (pp. 21-28). IEEE.
Dholakia, R. R., & Dholakia, N. (2004). Mobility and markets: emerging outlines of m-commerce. Journal of Business research, 57(12), 1391-1396.
Dixon, D. F. (1990). Marketing as production: The development of a concept. Journal of the Academy of Marketing Science, 18(4), 337-343.
Emotiv. (n.d.). Retrieved September 05, 2017, from https://www.emotiv.com/
Ernst, C. P. (Ed.). (2016). The Drivers of Wearable Device Usage: Practice and Perspectives. Springer.
Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International journal of human-computer studies, 59(4), 451-474.
Fiske, S. T., & Neuberg, S. L. (1990). A continuum of impression formation, from category-based to individuating processes: Influences of information and motivation on attention and interpretation. Advances in experimental social psychology, 23, 1-74.
Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. American psychologist, 34(10), 906.
Gao, Y., Li, H., & Luo, Y. (2015). An empirical study of wearable technology acceptance in healthcare. Industrial Management & Data Systems, 115(9), 1704-1723.
Gargiulo, G., Bifulco, P., Calvo, R. A., Cesarelli, M., Jin, C., & van Schaik, A. (2008, November). A mobile EEG system with dry electrodes. In Biomedical Circuits and Systems Conference, 2008. BioCAS 2008. IEEE (pp. 273-276). IEEE.
Gist, M. E., Schwoerer, C., & Rosen, B. (1989). Effects of alternative training methods on self-efficacy and performance in computer software training. Journal of applied psychology, 74(6), 884.
Gruzelier, J. H., Foks, M., Steffert, T., Chen, M. L., & Ros, T. (2014). Beneficial outcome from EEG-neurofeedback on creative music performance, attention and well-being in school children. Biological psychology, 95, 86-95.
Gummerus, J., & Pihlström, M. (2011). Context and mobile services' value-in-use. Journal of Retailing and Consumer Services, 18(6), 521-533.
Hair, J. E., Black, W. C., Babin, B. J., Anderson, R. E., and Tatham, R. L, (2006), Multivariate Data Analysis, Upper Saddle River, New Jersey: Pearson-Prentice Hall. 
Hayes, A. F., & Montoya, A. K. (2017). A tutorial on testing, visualizing, and probing an interaction involving a multicategorical variable in linear regression analysis. Communication Methods and Measures, 11(1), 1-30.
Hirunyawipada, T., & Paswan, A. K. (2006). Consumer innovativeness and perceived risk: implications for high technology product adoption. Journal of Consumer Marketing, 23(4), 182-198.
Ho, J., & Intille, S. S. (2005, April). Using context-aware computing to reduce the perceived burden of interruptions from mobile devices. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 909-918). ACM.
Jumisko-Pyykkö, S., & Vainio, T. (2012). Framing the context of use for mobile HCI. Social and Organizational Impacts of Emerging Mobile Devices: Evaluating Use: Evaluating Use (2012), 217.
Kelley, C., Lee, B., & Wilcox, L. (2017, May). Self-tracking for Mental Wellness: Understanding Expert Perspectives and Student Experiences. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (pp. 629-641). ACM.
Kim, H. W., Chan, H. C., & Chan, Y. P. (2007). A balanced thinking–feelings model of information systems continuance. International Journal of Human-Computer Studies, 65(6), 511-525.
Kim, S. S., & Malhotra, N. K. (2005). A longitudinal model of continued IS use: An integrative view of four mechanisms underlying postadoption phenomena. Management science, 51(5), 741-755. 
Lai, H. (2012). Neurological effects of non-ionizing electromagnetic fields. BioInitiative Working Group:" A Rationale for Biologically-Based Exposure Standards for Low-Intensity Electromagnetic Radiation.
Lazar, A., Koehler, C., Tanenbaum, J., & Nguyen, D. H. (2015, September). Why we use and abandon smart devices. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 635-646). ACM.
Ledger, D., & McCaffrey, D. (2014, December). How the Science of Human Behavior Change Offers the Secret to Long- Term Engagement. Retrieved September 12, 2017, from http://endeavourpartners.net/white-papers/
Lee, I., Kim, J., & Kim, J. (2005). Use contexts for the mobile internet: a longitudinal study monitoring actual use of mobile internet services. International Journal of Human-Computer Interaction, 18(3), 269-292.
Li, I., Dey, A., & Forlizzi, J. (2010, April). A stage-based model of personal informatics systems. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 557-566). ACM.
Liang, T. P., & Yeh, Y. H. (2011). Effect of use contexts on the continuous use of mobile services: the case of mobile games. Personal and Ubiquitous Computing, 15(2), 187-196.
Lu, J., Yao, J. E., & Yu, C. S. (2005). Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. The Journal of Strategic Information Systems, 14(3), 245-268.
Mack, R. L., Lewis, C. H., & Carroll, J. M. (1983). Learning to use word processors: problems and prospects. ACM Transactions on Information Systems (TOIS), 1(3), 254-271.
Maglio, P. P., & Spohrer, J. (2008). Fundamentals of service science. Journal of the academy of marketing science, 36(1), 18-20.
Marakas, G. M., Yi, M. Y., & Johnson, R. D. (1998). The multilevel and multifaceted character of computer self-efficacy: Toward clarification of the construct and an integrative framework for research. Information systems research, 9(2), 126-163.
McWilliams, A. (2017, July). Health Self-monitoring: Technologies and Global Markets. Retrieved September 12, 2017, from https://www.bccresearch.com/market-research/healthcare/health-self-monitoring-technologies-markets-report-hlc185b.html
Mihajlović, V., & Grundlehner, B. (2012, November). The effect of force and electrode material on electrode-to-skin impedance. In Biomedical Circuits and Systems Conference (BioCAS), 2012 IEEE (pp. 57-60). IEEE.
Mihajlović, V., Grundlehner, B., Vullers, R., & Penders, J. (2015). Wearable, wireless EEG solutions in daily life applications: what are we missing?. IEEE journal of biomedical and health informatics, 19(1), 6-21.
Mitchell, T. R., Hopper, H., Daniels, D., George-Falvy, J., & James, L. R. (1994). Predicting self-efficacy and performance during skill acquisition. Journal of Applied Psychology, 79(4), 506.
Mun, Y. Y., & Hwang, Y. (2003). Predicting the use of web-based information systems: self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model. International journal of human-computer studies, 59(4), 431-449.
MUSE. (n.d.). Retrieved September 12, 2017, from http://www.choosemuse.com/
NeuroSky. (n.d.). Retrieved September 05, 2017, from http://neurosky.com/
Nunnally, J. C. (1967). Psychometric theory. 
Oh, H., Jalali, L., & Jain, R. (2015, June). An intelligent notification system using context from real-time personal activity monitoring. In Multimedia and Expo (ICME), 2015 IEEE International Conference on (pp. 1-6). IEEE.
Patterson, P. G. (1993). Expectations and product performance as determinants of satisfaction for a high‐involvement purchase. Psychology & Marketing, 10(5), 449-465.
Pfurtscheller, G., Müller-Putz, G. R., Scherer, R., & Neuper, C. (2008). Rehabilitation with brain-computer interface systems. Computer, 41(10).
Plouffe, C. R., Hulland, J. S., & Vandenbosch, M. (2001). Richness versus parsimony in modeling technology adoption decisions—understanding merchant adoption of a smart card-based payment system. Information systems research, 12(2), 208-222.
Potts, C. (1995, August). Using schematic scenarios to understand user needs. In Proceedings of the 1st conference on Designing interactive systems: processes, practices, methods, & techniques(pp. 247-256). ACM.
Raij, A., Ghosh, A., Kumar, S., & Srivastava, M. (2011, May). Privacy risks emerging from the adoption of innocuous wearable sensors in the mobile environment. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 11-20). ACM.
Rapp, A., & Cena, F. (2016). Personal informatics for everyday life: How users without prior self-tracking experience engage with personal data. International Journal of Human-Computer Studies, 94, 1-17. 
Rauschnabel, P. A., Brem, A., & Ivens, B. S. (2015). Who will buy smart glasses? Empirical results of two pre-market-entry studies on the role of personality in individual awareness and intended adoption of Google Glass wearables. Computers in Human Behavior, 49, 635-647.
Rogers, E. M. (1995). Diffusion of innovations. New York.
Rooksby, J., Rost, M., Morrison, A., & Chalmers, M. C. (2014, April). Personal tracking as lived informatics. In Proceedings of the 32nd annual ACM conference on Human factors in computing systems (pp. 1163-1172). ACM.
Rosson, M. B., & Carroll, J. M. (2002). Usability engineering: scenario-based development of human-computer interaction. Morgan Kaufmann.
Samoocha, D., Bruinvels, D. J., Elbers, N. A., Anema, J. R., & van der Beek, A. J. (2010). Effectiveness of web-based interventions on patient empowerment: a systematic review and meta-analysis. Journal of medical Internet research, 12(2).
Schilit, B. N., & Theimer, M. M. (1994). Disseminating active map information to mobile hosts. IEEE network, 8(5), 22-32.
Schilit, B., Adams, N., & Want, R. (1994, December). Context-aware computing applications. In Mobile Computing Systems and Applications, 1994. WMCSA 1994. First Workshop on (pp. 85-90). IEEE.
Searle, A., & Kirkup, L. (2000). A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiological measurement, 21(2), 271.
Seigneur, J. M., Xavier, T., & Tewfiq, M. (2010). Mobile/wearable device electrosmog reduction through careful network selection. AHIC 2010 Proceedings.
Smith, R. E., & Swinyard, W. R. (1983). Attitude-behavior consistency: The impact of product trial versus advertising. Journal of Marketing Research, 257-267.
Sniehotta, F. F., Scholz, U., & Schwarzer, R. (2005). Bridging the intention–behaviour gap: Planning, self-efficacy, and action control in the adoption and maintenance of physical exercise. Psychology & Health, 20(2), 143-160. 
Sohn, T., Li, K. A., Griswold, W. G., & Hollan, J. D. (2008, April). A diary study of mobile information needs. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 433-442). ACM.
Spiller, S. A., Fitzsimons, G. J., Lynch Jr, J. G., & McClelland, G. H. (2013). Spotlights, floodlights, and the magic number zero: Simple effects tests in moderated regression. Journal of Marketing Research, 50(2), 277-288.
Thatcher, J. B., & Perrewe, P. L. (2002). An empirical examination of individual traits as antecedents to computer anxiety and computer self-efficacy. MIS quarterly, 381-396. 
Thompson, T., Steffert, T., Ros, T., Leach, J., & Gruzelier, J. (2008). EEG applications for sport and performance. Methods, 45(4), 279-288.
Trautmann, S., Rehm, J., & Wittchen, H. (2016). The economic costs of mental disorders. Retrieved September 12, 2017, from http://embor.embopress.org/content/17/9/1245
van Boxtel, G. J., Denissen, A. J., Jäger, M., Vernon, D., Dekker, M. K., Mihajlović, V., & Sitskoorn, M. M. (2012). A novel self-guided approach to alpha activity training. International journal of psychophysiology, 83(3), 282-294.
Vargo, S. L., & Lusch, R. F. (2008). Service-dominant logic: continuing the evolution. Journal of the Academy of marketing Science, 36(1), 1-10.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology.
Veryzer, R. W. (2000). Design and consumer research. Design Management Journal, 1(1), 64-73.
Veryzer, R. W., & Borja de Mozota, B. (2005). The impact of user‐oriented design on new product development: An examination of fundamental relationships. Journal of product innovation management, 22(2), 128-143.
Vredenburg, K., Isensee, S., Righi, C., & Design, U. C. (2001). An integrated approach. Englewood Cliffs: Prentice Hall. 
Xu, H., Teo, H. H., Tan, B. C., & Agarwal, R. (2009). The role of push-pull technology in privacy calculus: the case of location-based services. Journal of Management Information Systems, 26(3), 135-174.
Yang, R., Shin, E., Newman, M. W., & Ackerman, M. S. (2015, September). When fitness trackers don't'fit': end-user difficulties in the assessment of personal tracking device accuracy. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 623-634). ACM.
Zhang, L., Tan, W., Xu, Y., & Tan, G. (2012). Dimensions of consumers' perceived risk and their influences on online consumers' purchasing behavior. Communications in Information Science and Management Engineering, 2(7).
Ziai, W. C., Schlattman, D., Llinas, R., Venkatesha, S., Truesdale, M., Schevchenko, A., & Kaplan, P. W. (2012). Emergent EEG in the emergency department in patients with altered mental states. Clinical Neurophysiology, 123(5), 910-917.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *