帳號:guest(18.223.172.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):左廣東
作者(外文):ZUO, GUANGDONG
論文名稱(中文):歐盟和美國碳排放,石油和煤炭現貨及期貨的波動溢出和因果關系研究
論文名稱(外文):Volatility Spillovers and Causality of Carbon Emissions, Oil and Coal Spot and Futures for the EU and USA
指導教授(中文):馬可立
莊慧玲
指導教授(外文):McAleer, Michael
Chuang, Hwei-Lin
口試委員(中文):冼芻蕘
蔡子晧
口試委員(外文):SIN, Chor -Yiu
Tsai, Tzu-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:計量財務金融學系
學號:104071466
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:52
中文關鍵詞:炭排放化石燃料原油煤炭低炭目标绿色能源
外文關鍵詞:Carbon emissionsFossil fuelsCrude oilCoalLow carbon targetsGreen energy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:69
  • 評分評分:*****
  • 下載下載:27
  • 收藏收藏:0
摘要
最近的研究表明,若要限制氣候變化,相對於其他溫室氣體或空氣汙染物而言,更應側重於減少二氧化碳的排放。許多國家都非常重視碳排放,以改善空氣質量和公共健康。歐洲和其他一些國家的人類活動產生的碳排放的最大來源是為產生電力,熱力和動力而進行的化石燃料的燃燒。化石燃料和碳排放的價格可能會相互影響。由於碳排放的重要性及其與化石燃料的聯繫,以及格蘭傑(1980)在炭排放,原油和煤炭現貨和期貨價格,回報率,波動率上的可能性,這個領域近來已成為非常重要的研究課題。對美國而言,原油和煤炭的日均現貨價格和期貨價格可用,但沒有每日碳排放價格的期貨價格。對於歐盟而言,目前沒有煤炭或碳排放的每日現貨價格,但有原油,煤炭和碳排放的每日期貨價格。因此,每日價格將用於分析碳排放,原油和煤炭的現貨價格和期貨價格的格蘭傑因果關係和波動溢出效應。由於估計量是基於正態分佈的錯誤假設下的QMLE,我們將似然比(LR)檢驗改為準似然比檢驗(QLR)以測試多變量條件波動率對角BEKK模型,該模型估計和檢驗波動率溢出效應,並且具有有效的規律性條件和漸近性質,全BEKK模型也可以估計波動溢出效應,但是只有在零非對角線元素的零假設下才具有有效的正則性條件和漸近性質。建議使用最佳套期保值比率的動態套期保值策略來分析現貨和期貨收益的市場波動以及碳排放,原油和煤炭價格的波動。
Abstract
Recent research shows that efforts to limit climate change should focus on reducing emissions of carbon dioxide over other greenhouse gases or air pollutants. Many countries are paying substantial attention to carbon emissions to improve air quality and public health. The largest source of carbon emissions from human activities in some countries in Europe and elsewhere is from burning fossil fuels for electricity, heat, and transportation. The prices of fuel and carbon emissions can influence each other. Owing to the importance of carbon emissions and their connection to fossil fuels, and the possibility of Granger (1980) causality in spot and futures prices, returns and volatility of carbon emissions, crude oil and coal have recently become very important research topics. For the USA, daily spot and futures prices are available for crude oil and coal, but there are no daily futures prices for carbon emissions. For the EU, there are no daily spot prices for coal or carbon emissions, but there are daily futures prices for crude oil, coal and carbon emissions. For this reason, daily prices will be used to analyse Granger causality and volatility spillovers in spot and futures prices of carbon emissions, crude oil, and coal. As the estimators are based on QMLE under the incorrect assumption of a normal distribution, we modify the likelihood ratio (LR) test to a quasi-likelihood ratio test (QLR) to test the multivariate conditional volatility Diagonal BEKK model, which estimates and tests volatility spillovers, and has valid regularity conditions and asymptotic properties, against the alternative Full BEKK model, which also estimates volatility spillovers, but has valid regularity conditions and asymptotic properties only under the null hypothesis of zero off-diagonal elements. Dynamic hedging strategies using optimal hedge ratios are suggested to analyse market fluctuations in the spot and futures returns and volatility of carbon emissions, crude oil and coal prices.
Contents
1. Introduction...................................................................................................................... 4
2. Data .................................................................................................................................. 5
3. Methodology .................................................................................................................. 10
3.1 Univariate Conditional Volatility ......................................................................... 11
3.2 Multivariate Conditional Volatility ...................................................................... 13
3.3 Diagonal BEKK ..................................................................................................... 14
3.4 Full, Triangular and Hadamard BEKK .................................................................... 15
3.5 Granger Causality, Volatility Spillovers, and Optimal Hedge Ratios ..................... 17
4. Unit Root Tests ............................................................................................................... 22
5. Granger Causality and Spillovers in Returns and Volatilities........................................... 23
6. Concluding Remarks ....................................................................................................... 27
References .......................................................................................................................... 50
Asai, M., C.-L. Chang and M. McAleer (2017), Realized matrix-exponential stochastic volatility with asymmetry, long memory and spillovers, to appear in Journal of Econometrics.
Amemiya, T. (1985), Advanced Econometrics, Harvard University Press, Cambridge, MA, USA.
Baba, Y., R.F. Engle, D. Kraft and K.F. Kroner (1985), Multivariate simultaneous generalized ARCH, Unpublished manuscript, Department of Economics, University of California, San Diego, CA, USA.
Bollerslev, T. (1986), Generalized autoregressive conditional heteroscedasticity, Journal of Econometrics, 31(3), 307-327.
Bollerslev, T. (1990), Modelling the coherence in short-run nominal exchange rate: A multivariate generalized ARCH approach, Review of Economics and Statistics, 72, 498-505.
Bollerslev, T., R.F. Engle, and J.M. Wooldridge (1988), A capital asset pricing model with time varying covariance, Journal of Political Economy, 96(1), 116-131.
Caporin, M. and M. McAleer (2012), Do we really need both BEKK and DCC? A tale of two multivariate GARCH models, Journal of Economic Surveys, 26(4), 736-751.
Chang, C.-L., Y.-Y. Li and M. McAleer (2015), Volatility Spillovers Between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice, Tinbergen Institute Discussion Paper 15-077/III, Tinbergen Institute.
Chang, C.-L. and M. McAleer (2017), A simple test for causality in volatility, Econometrics, 5(1:15), 1-5.
Chang, C.-L., M. McAleer, and R. Tansuchat (2011), Crude oil hedging strategies using dynamic multivariate GARCH, Energy Economics, 33(5), 912-923.
Dickey D.A. and W.A. Fuller (1979), Distribution of the estimators for autoregressive time series with a unit root, Journal of the American Statistical Association, 74(366),
51
427-431.
Dickey, D.A. and W.A. Fuller (1981), Likelihood ratio statistics for autoregressive time series with a unit root, Econometrica, 49(4), 1057-1072.
Elliott, G., T.J. Rothenberg and J.H. Stock (1996), Efficient tests for an autoregressive unit root, Econometrica, 813-836.
Engle, R.F. (1982), Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50(4), 987-1007.
Engle, R.F. and K.F. Kroner (1995), Multivariate simultaneous generalized ARCH, Econometric Theory, 11(1), 122-150.
Granger, C.W.J. (1980), Testing for causality: A personal viewpoint, Journal of Economic Dynamics and Control, 2, 329-352.
Hafner, C.M. and H. Herwartz (2006), A Lagrange multiplier test for causality in variance, Economics Letters, 93(1), 137-141.
Hafner, C. and M. McAleer (2014), A one line derivation of DCC: Application of a vector random coefficient moving average process, Tinbergen Institute Discussion Paper 14-087, The Netherlands.
Jeantheau, T. (1998), Strong consistency of estimators for multivariate ARCH models, Econometric Theory, 14(1), 70-86.
Kwiatkowski, D., P.C.B. Phillips, P Schmidt, and Y Shin, (1992), Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?, Journal of Econometrics, 54(1-3), 159-178.
Ling, S. and M. McAleer (2003), Asymptotic theory for a vector ARMA-GARCH model, Econometric Theory, 19(2), 280-310.
McAleer, M., F. Chan, S. Hoti and O. Lieberman (2008), Generalized autoregressive conditional correlation, Econometric Theory, 24(6), 1554-1583.
McAleer, M. and C. Hafner (2014), A one line derivation of EGARCH, Econometrics, 2, 92–97.
McAleer, M., S. Hoti and F. Chan (2009), Structure and asymptotic theory for multivariate asymmetric conditional volatility, Econometric Reviews, 28, 422-440.
52
Rogelj, J., M. Meinshausen, J. Sedláček, and R. Knutti. (2014), Implications of potentially lower climate sensitivity on climate projections and policy, Environmental Research Letters, 9(3), 3-10.
Said, S.E. and D.A. Dickey (1984), Testing for unit roots in autoregressive-moving average models of unknown order, Biometrika, 71 (3), 599-607.
Tsay, R.S. (1987), Conditional heteroscedastic time series models, Journal of the American Statistical Association, 82(398), 590-604.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *