|
[1] Jones, N. “The quantum company: DWave is pioneering a novel way of making quantum computers–but it is also courting controversy.” Nature, 498(7454), 286289. (2013). [2] Castelvecchi, D. IBM’s quantum cloud computer goes commercial.” Nature News, 543(7644), 159. (2017). [3] Benioff, P. “The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines’. Journal of statistical physics, 22(5), 563591 (1980). [4] Gross, M., and Haroche, S. “Superradiance: An essay on the theory of collective spontaneous emission. Physics reports, 93(5), 301396.( 1982). [5] Shor, P. W. “Algorithms for quantum computation: Discrete logarithms and factoring.” In Proceedings 35th annual symposium on foundations of computer science (pp. 124134). Ieee.(1994). [6] Wang, J. Y., Yang, B., Liao, S. K., Zhang, L., Shen, Q., Hu, X. F., ... and Zhong, B. “Direct and fullscale experimental verifications towards ground–satellite quantum key distribution.” Nature Photonics, 7(5), 387.(2013) [7] Ritter, S., Nölleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., ... and Rempe, G. “An elementary quantum network of single atoms in optical cavities”. Nature, 484(7393), 195. (2012). [8] Terraciano, M. L., Knell, R. O., Norris, D. G., Jing, J., Fernández, A., and Orozco, L. A. “Photon burst detection of single atoms in an optical cavity.” Nature Physics, 5(7), 480. (2009). [9] Buluta, I., Ashhab, S., and Nori, F. “Natural and artificial atoms for quantum computation.” Reports on Progress in Physics, 74(10), 104401. (2011). [10] Stoler, D., Saleh, B. E. A., and Teich, M. C. “Binomial states of the quantized radiation field. Optica Acta: International Journal of Optics”, 32(3), 345355. (1985). [11] VidiellaBarranco, A., and Roversi, J. A. “Statistical and phase properties of the binomial states of the electromagnetic field”. Physical Review A, 50(6), 5233. (1994). [12] Dattoli, G., Gallardo, J., and Torre, A. “Binomial states of the quantized radiation field: comment.” JOSA B, 4(2), 185187. (1987). [13] Arecchi, F. T., Courtens, E., Gilmore, R., and Thomas, H. “Atomic coherent states in quantum optics.” Physical Review A, 6(6), 2211. (1972). [14] Gerry, C., Knight, P., and Knight, P. L. “Introductory quantum optics.” Cambridge university press. (2005). [15] Li, K. C., Meng, X. G., and Wang, J. S. “Phase Space Analysis of the Twomode Binomial State Produced by Quantum Entanglement in a Beamsplitter.” International Journal of Theoretical Physics, 110. (2019). [16] Lambert, N., Emary, C., and Brandes, T. “Entanglement and the phase transition in singlemode superradiance.” Physical Review Letters, 92(7), 073602. (2004). [17] Gilmore, R., Bowden, C. M., and Narducci, L. M. “Classicalquantum correspondence for multilevel systems.” Physical Review A, 12(3), 1019. (1975). [18] Jaynes, E. T., and Cummings, F. W. “ Comparison of quantum and semiclassical radiation theories with application to the beam maser.” Proceedings of the IEEE, 51(1), 89109. (1963). [19] Wang, Y. K., and Hioe, F. T. “ Phase transition in the Dicke model of superradiance”. Physical Review A, 7(3), 831. (1973). [20] Rabi, I. I. “On the process of space quantization.” Physical Review, 49(4), 324. (1936). [21] R. H. Dicke, “Coherence in Spontaneous Radiation Processes,” Phys. Rev. 93, 99 (1954). [22] M. Tavis and F. W. Cummings, “Exact Solution for an NMolecule— RadiationField Hamiltonian,” Phys. Rev. 170, 170 (1968). [23] Y. K. Wang and F. T. Hioe, “Phase Transition in the Dicke Model of Superradiance,” Phys. Rev. A 7, 831 (1973). [24] M. O. Scully, E. S. Fry, C. H. Raymond Ooi, and K. Wodkiewicz, “Directed Spontaneous Emission from an Extended Ensemble of N Atoms: Timing Is Everything,” Phys. Rev. Lett. 96, 010501 (2006). [25] M. O. Scully and A. Svdzinsky, “The Super of Superradiance,” Science 325, 1510 (2009). [26] G. Chen, Z. Chen, and J.Q. Liang, “Groundstate properties for coupled BoseEinstein condensates inside a cavity quantum electrodynamics,” Europhys. Lett. 80, 40004 (2007). [27] Q.H. Chen, T. Liu, Y.Y. Zhang, and K.L. Wang, “Quantum phase transitions in coupled twolevel atoms in a singlemode cavity,” Phys. Rev. A 82, 053841 (2010). [28] N. Lambert, C. Emary, and T. Brandes, “Entanglement and the Phase Transition in SingleMode Superradiance,” Phys. Rev. Lett. 92, 073602 (2004). [29] J. Vidal and S. Dusuel, “Finitesize scaling exponents in the Dicke model,” Europhys. Lett. 74, 817 (2006). [30] V. Buzek, M. Orszag, and M. Rosko, “Instability and Entanglement of the Ground State of the Dicke Model,” Phys. Rev. Lett. 94, 163601 (2005). [31] O. Tsyplyatyev and D. Loss, “Dicke model: Entanglement as a finite size effect,” J. Phys.: Conf. Ser. 193, 012134 (2009). [32] B. M. RodrıguezLara and R.K. Lee, “Quantum phase transition of nonlinear light in the finite size Dicke Hamiltonian,” J. Opt. Soc. Am. B 27, 2443 (2010). [33] R. A. Robles Robles, S. A. Chilingaryan, B. M. RodrıguezLara, and R.K. Lee, “Ground state in the finite Dicke model for interacting qubits,” Phys. Rev. A 91, 033819 (2015). [34] S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50, No. 7, 36 (1997). [35] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005). [36] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001). [37] T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833 (2005). [38] M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable singlephoton pulses,” Nature 438, 837 (2005). [39] K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008). [40] J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008). [41] Y.L. Chuang and R.K. Lee, “Conditions to preserve quantum entanglement of quadrature fluctuation fields in electromagnetically induced transparency media,” Opt. Lett. 34, 1537 (2009). [42] Y.L. Chuang, I. A. Yu, and R.K. Lee, “Quantum theory for pulse propagation in electromagneticallyinducedtransparency media beyond the adiabatic approximation,” Phys. Rev. A 91, 063818 (2015). [43] Y.L. Chuang, R.K. Lee, and I. A. Yu, “Opticaldensityenhanced squeezedlight generation without optical cavities,” Phys. Rev. A 96, 053818 (2017). [44] Y.L. Chuang, R.K. Lee, and I. A. Yu, ”Generation of Quantum Entanglement based on Electromagnetically Induced Transparency Media,” arXiv: 1906.12025 (2019). [45] M. Hayn and T. Brandes, “Thermodynamics and superradiant phase transitions in a threelevel Dicke model,” Phys. Rev. E 95, 012153 (2017). [46] K. R. Brown, K. M. Dani, D. M. StamperKurn, and K. B. Whaley, ”Deterministic optical Fockstate generation.” Phys. Rev. A 67, 043818 (2003). [47] H. J. Lipkin, N. Meshkov, and A. J. Glick, “Validity of manybody approximation methods for a solvable model. (I). Exact solutions and perturbation theory,” Nucl. Phys. 62, 188 (1965); N. Meshkov, A. J. Glick, and H. J. Lipkin, “Validity of manybody approximation methods for a solvable model: (II). Linearization procedures,” Nucl. Phys. 62, 199 (1965); A. J. Glick, H. J. Lipkin, and N. Meshkov, “Validity of manybody approximation methods for a solvable model: (III). Diagram summations,” Nucl. Phys. 62, 211 (1965). [48] Welsch, D. G., Vogel, W., Opatrny, T. (1999). “II Homodyne detection and quantumstate reconstruction.” Progress in Optics (Vol. 39, pp. 63211). Elsevier. [49] Lvovsky, A. I. (2004). “Iterative maximumlikelihood reconstruction in quantum homodyne tomography.” Journal of Optics B: Quantum and Semiclassical Optics, 6(6), S556 [50] Leonhardt, U., Paul, H., d’Ariano, G. M. (1995).“ Tomographic reconstruction of the density matrix via pattern functions. Physical Review A, 52(6), 4899. [51] Smithey, D. T., Beck, M., Raymer, M. G., Faridani, A. (1993). “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. Physical review letters, 70(9), 1244. [52] d’Ariano, G. M., Macchiavello, C., Paris, M. G. A. “ Detection of the density matrix through optical homodyne tomography without filtered back projection.” Physical Review A, 50(5), 4298.(1994). [53] Tiunov, E. S., Tiunova, V. V., Ulanov, A. E., Lvovsky, A. I., “ Fedorov, A. K. “ Experimental quantum homodyne tomography via machine learning.” Optica, 7(5), 448454.( 2020). [54] Gardiner, C., Zoller, P., Zoller, P..“ Quantum noise: a handbook of Markovian and nonMarkovian quantum stochastic methods with applications to quantum optics.” Springer Science and Business Media. (2004) [55] Vogel, K., Risken, H.. “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase.” Physical Review A, 40(5), 2847. (1989) [56] Titchmarsh, E. C. . “ Some integrals involving Hermite polynomials.” Journal of the London Mathematical Society, 1(1), 1516. (1948) [57] Shepp, L. A., and Logan, B. F. (1974). “The Fourier reconstruction of a head section.” IEEE Transactions on nuclear science, 21(3), 2143. |