帳號:guest(18.188.66.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林崇致
作者(外文):Lin, Chung-Chih
論文名稱(中文):基於矽光子平台的高效光接收系統
論文名稱(外文):A Highly-Efficient Optical Receiver System on Silicon-Photonics Platform
指導教授(中文):王立康
指導教授(外文):Wang, Li-Karn
口試委員(中文):李明昌
洪毓玨
那允中
鄭致灝
口試委員(外文):Li, Ming-Chang
Hung, Yu-Chueh
Na, Yun-Chung
Cheng, Chih-Hao
學位類別:博士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:104066804
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:143
中文關鍵詞:光接收器矽平台慢光光子晶體光柵耦合器垂直耦合深紫外光光刻深度學習神經網路
外文關鍵詞:optical receiversilicon platformslow lightphotonic crystalgrating couplerperfectly vertical couplingDUV lithographydeep-learningneural network
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
This study aims to enhance the efficiency of an optical receiver system utilizing a silicon-photonics platform. Both the absorption efficiency of the photodetector and the coupling efficiency of the grating coupler are optimized. A slow light effect by photonic crystal is leveraged to significantly boost absorption efficiency and simulated using the finite-difference time-domain method, resulting in a 22-fold increase in absorption. The 1D and 2D grating couplers, based on SOI wafer and without a bottom mirror, are designed to achieve highly efficient and perfectly vertical coupling, and the fabrication is performed using DUV 248 nm lithography. A resonance induced by the corner mirror is utilized to reduce back-reflection and modify the mode profile. The measured coupling efficiency of the 1D and 2D grating couplers reaches up to -1.185 dB and -2.0 dB, respectively, demonstrating promising performance for various applications. Furthermore, an inverse design process utilizing a neural network is proposed to enhance the design and optimization of the apodization grating coupler. An apodization grating coupler based on single-mode waveguide is designed to achieve a coupling efficiency of -0.94 dB, which represents the highest record reported in the literatures for the case of single-mode waveguide and without a bottom mirror. Furthermore, the optimization result is verified using CMA-ES, demonstrating similar structural parameters and indicating the achievement of global optimization through the proposed inverse design process.
Chapter 1 Slow Light Waveguide Photodetector 1
1-1 Introduction 1
1-2 Formalism 4
1-3 Design Strategies 6
1-4 Results and Discussion 13
Chapter Completely Vertical Grating Coupler 18
2-1 Introduction 18
2-2 Grating Coupler Theory 21
2-3 Design 1D Grating Coupler 27
2-3-1 Design for High Coupling Efficiency 32
2-3-2 Design for Minimal Back-Reflection 37
2-3-3 Summary of 1D Grating Coupler 41
2-4 Design 2D Grating Coupler 42
2-4-1 Design with Unit-Cell Simulation 45
2-4-2 Full Structure Simulation 51
2-4-3 Results and Discussion 54
2-5 Grating Coupler Fabrication 60
2-5-1 Fabrication Layout 63
2-5-2 Fabrication Process and Results 74
2-6 Grating Coupler Measurement 84
2-6-1 Calibration Device Measurement 87
2-6-2 Measurement on Wafer-Level Testing 90
2-6-3 Measurement on Die-Level Testing 98
2-6-4 Results and Discussion 104
2-7 Grating Design with Neural Network 115
2-7-1 Materials and Methods 117
2-7-2 Results and Discussion 123
2-7-3 Neural Network and CMA-ES 130
Chapter 3 Conclusion 133
Reference 136
1. J. Michel, J. Liu, and L. C. Kimerling. High-performance Ge-on-Si photodetectors. Nat. Photonics 2010, 4, 527 – 534.
2. V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan and L. C. Kimerling. Near-infrared absorption of germanium thin films on silicon. Appl. Phys. Lett 2008, 93, 111115.
3. D. D. Cannon, J. Liu, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling. Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L band telecommunications. Appl. Phys. Lett 2004, 84, 906.
4. S. Liao, N.-N. Feng, D. Feng, P. Dong, R. Shafiiha, C.-C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, and M. Asghari. 36 GHz submicron silicon waveguide germanium photodetector. Opt. Express 2011, 19(11), 10967–10972.
5. L. Ding, T.-Y. Liow, E.-J. Lim, N. D., M. Yu, and G.-Q. Lo. Ge Waveguide Photodetectors with Responsivity Roll-off beyond 1620 nm Using Localized Stressor. Proc. OFC/NFOEC, Los Angeles, CA, 2012, pp. 1-3.
6. J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis. Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications. Appl. Phys. Lett 2009, 95, 133506.
7. D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang. High-responsivity GeSn short-wave infrared p-i-n photodetectors. Appl. Phys. Lett 2013, 102, 141111.
8. T. Y. Liow, A. E. Lim, N. Duan, M. Yu, G. Q. Lo. Waveguide Germanium Photodetector with High Bandwidth and high L-band Responsivity. Tech. Dig. Opt. Fiber Commun. 2013.
9. T. Baba. Slow light in photonic crystals. Nat. Photonics 2008, 2, 465 – 473.
10. J. García, P. Sanchis, A. Martínez and J. Martí. 1D periodic structures for slow-wave induced non-linearity enhancement. Opt Express 2008, 16(5), 3146-3160.
11. M. Povinelli, S. Johnson, and J. Joannopoulos. Slow-light, band-edge waveguides for tunable time delays. Opt. Express 2005, 13(18), 7145-7159.
12. J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude. High-speed low-voltage electrooptic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 2008, 16(6), 4177–4191.
13. X. Wang, S. Chakravarty, B. S. Lee, C. Lin, and R. T. Chen. Ultraefficient control of light transmission through photonic potential barrier modulation. Opt. Lett. 2009, 34(20), 3202-3204.
14. Y. A. Vlasov and S. J. McNab. Coupling into the slow light mode in slab-type photonic crystal waveguides. Opt. Lett. 2006 31(1), 50-52.
15. M. Askari, and A. Adibi. High efficiency coupling of light from a ridge to a photonic crystal waveguide. Appl. Opt. 2013, 52(23), 5803-5815.
16. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss. Coupling into slow-mode photonic crystal waveguides. Opt. Lett. 2007, 32(18), 2638–2640.
17. P. Pottier, M. Gnan and R.M. De La Rue. Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers. Opt. Express 2007, 15(11), 6569–6575.
18. R. A. Soref, J. Schmidtchen, and K. Petermann. Large single mode RIB waveguides in GeSi-Si and Si-on-SiO2. IEEE J. Quantum Electron 1991, 27, 1971–1974.
19. C. Martijn de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran. Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes. Opt. Express 2009, 17(20), 17338-17343.
20. H.-Y. Yu, S. Ren, W. S. Jung, A. K. Okyay, D. A. B. Miller, K. C. Saraswat. High-Efficiency p-i-n Photodetectors on Selective-Area-Grown Ge for Monolithic Integration. IEEE Electron Device Letters 2009, 30(11), 1161-1163.
21. T.-T. Wu, C.-Y. Chou, M.-C. M. Lee, and N. Na. A critically coupled Germanium photodetector under vertical illumination. Opt. Express 2012, 20(28), 29338-29346.
22. Kopp, C.; Bernabé, S.; Bakir, B.B.; Fedeli, J.-M.; Orobtchouk, R.; Schrank, F.; Porte, H.; Zimmermann, L.; Tekin, T. Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging. IEEE J. Sel. Top. Quantum Electron 2011, 17, 498–509.
23. Schiappelli, F.; Kumar, R.; Prasciolu, M.; Cojoc, D.; Cabrini, S.; De Vittorio, M.; Visimberga, G.; Gerardino, A.; Degiorgio, V.; Di Fabrizio, E. Efficient Fiber-to-Waveguide Coupling by a Lens on the End of the Optical Fiber Fabricated by Focused Ion Beam Milling. Microelectronic Engineering 2004, 73–74, 397–404.
24. Almeida, V. R.; Panepucci, R. R.; Lipson, M. Nanotaper for compact mode conversion. Opt. Lett. 2003, 28, 1302–1304.
25. Papes, M.; Cheben, P.; Benedikovic, D.; Schmid, J. H.; Pond, J.; Halir, R.; Ortega-Moñux, A.; Wangüemert-Pérez, G.; Ye, W. N.; Xu, D.-X.; Janz, S.; Dado, M.; Vašinek, V. Fiber-Chip Edge Coupler with Large Mode Size for Silicon Photonic Wire Waveguides. Opt. Express 2016, 24, 5026–5038.
26. Barkai, A.; Liu, A.; Kim, D.; Cohen, R.; Elek, N.; Chang, H.-H.; Malik, B.H.; Gabay, R.; Jones, R.; Paniccia, M.; et al. Double-Stage Taper for Coupling Between SOI Waveguides and Single-Mode Fiber. J. Light. Technol. 2008, 26, 3860–3865.
27. Chen, L.; Doerr, C.R.; Chen, Y.-K.; Liow, T.-Y. Low-Loss and Broadband Cantilever Couplers Between Standard Cleaved Fibers and High-Index-Contrast Si_3 N_4 or Si Waveguides. IEEE Photonics Technol. Lett. 2010, 22, 1744–1746.
28. Tseng, H.-L.; Chen, E.; Rong, H.; Na, N. High-performance silicon-on-insulator grating coupler with completely vertical emission Opt. Express 2015, 23, 24433–24439.
29. Michaels, A.; Yablonovitch, E. Inverse design of near unity efficiency perfectly vertical grating couplers. Opt. Express 2018, 26, 4766–4779.
30. Su, L.; Trivedi, R.; Sapra, N.V.; Piggott, A.Y.; Vercruysse, D.; Vučković, J. Fully-automated optimization of grating couplers. Opt. Express 2018, 26, 4023–4034.
31. Zhang, C.; Sun, J.-H.; Xiao, X.; Sun, W.-M.; Zhang, X.-J.; Chu, T.; Yu, J.-Z.; Yu, Y.-D. High efficiency grating coupler for coupling between single-mode fiber and Soi Waveguides. Chin. Phys. Lett. 2013, 30, 014207.
32. Cheng, Z.; Chen, X.; Wong, C.; Xu, K.; Fung, C.; Chen, Y.; Tsang, H. Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. Opt. Lett. 2012, 37, 1217–1219.
33. Cheng, Z.; Tsang, H. Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides. Opt. Lett. 2014, 39, 2206–2209.
34. Guo, R.; Zhang, S.; Gao, H.; Senthil Murugan, G.; Liu, T.; Cheng, Z. Blazed subwavelength grating coupler. Photon. Res. 2023, 11, 189–195.
35. Hoffmann, J.; Schulz, K.M.; Pitruzzello, G.; Fohrmann, L.S.; Petrov, A.Y.; Eich, M. Backscattering design for a focusing grating coupler with fully etched slots for transverse magnetic modes. Sci. Rep. 2018, 8, 17746.
36. Roelkens, G.; Vermeulen, D.; Van Thourhout, D.; Baets, R.; Brision, S.; Lyan, P.; Gautier, P.; Fédéli, J.-M. High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit. Appl. Phys. Lett. 2008, 92, 131101.
37. Vermeulen, D.; Selvaraja, S.; Verheyen, P.; Lepage, G.; Bogaerts, W.; Absil, P.; Thourhout, D.V.; Roelkens, G. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform. Opt. Express 2010, 18, 18278–18283.
38. Na, N.; Frish, H.; Hsieh, I.-W.; Harel, O.; George, R.; Barkai, A.; Rong, H. Efficient broadband silicon-on-insulator grating coupler with low backreflection. Opt. Lett. 2011, 36, 2101–2103.
39. Carroll, L.; Gerace, D.; Cristiani, I.; Andreani, L.C. Optimizing polarization-diversity couplers for Si-photonics: Reaching the −1dB coupling efficiency threshold. Opt. Express 2014, 22, 14769–14781.
40. Luo, Y.; Nong, Z.; Gao, S.; Huang, H.; Zhu, Y.; Liu, L.; Zhou, L.; Xu, J.; Liu, L.; Yu, S.; Cai, X. Low-Loss Two-Dimensional Silicon Photonic Grating Coupler with a Backside Metal Mirror. Opt. Lett. 2018, 43, 474–477.
41. Watanabe, T.; Fedoryshyn, Y.; Leuthold, J. 2-D Grating Couplers for Vertical Fiber Coupling in Two Polarizations. IEEE Photonics Journal 2019, 11, 1–9.
42. Lin, C.-C.; Lu, Y.-C.; Liu, Y.-H.; Wang, L.; Na, N. Design of a Completely Vertical, Polarization-Independent Two-Dimensional Grating Coupler with High Coupling Efficiency. Sensors 2023, 23, 4662.
43. Taillaert, D.; Bienstman, P.; Baets, R. Compact Efficient Broadband Grating Coupler for Silicon-on-Insulator Waveguides. Opt. Lett. 2004, 29, 2749–2751.
44. Zhang, H.; Li, C.; Tu, X.; Song, J.; Zhou, H.; Luo, X.; Huang, Y.; Yu, M.; Lo, G. Q. Efficient Silicon Nitride Grating Coupler with Distributed Bragg Reflectors. Opt. Express 2014, 22, 21800–21805.
45. Zaoui, W.S.; Kunze, A.; Vogel, W.; Berroth, M. CMOS-Compatible Polarization Splitting Grating Couplers With a Backside Metal Mirror. IEEE Photonics Technology Letters 2013, 25, 1395–1397.
46. Watanabe, T.; Ayata, M.; Koch, U.; Fedoryshyn, Y.; Leuthold, J. Perpendicular Grating Coupler Based on a Blazed Antiback-Reflection Structure. Journal of Lightwave Technology 2017, 35, 4663–4669.
47. Benedikovic, D.; Alonso-Ramos, C.; Cheben, P.; Schmid, J. H.; Wang, S.; Xu, D.-X.; Lapointe, J.; Janz, S.; Halir, R.; Ortega-Moñux, A.; Wangüemert-Pérez, J. G.; Molina-Fernández, I.; Fédéli, J.-M.; Vivien, L.; Dado, M. High-Directionality Fiber-Chip Grating Coupler with Interleaved Trenches and Subwavelength Index-Matching Structure. Opt. Lett. 2015, 40, 4190–4193.
48. Benedikovic, D.; Alonso-Ramos, C.; Pérez-Galacho, D.; Guerber, S.; Vakarin, V.; Marcaud, G.; Le Roux, X.; Cassan, E.; Marris-Morini, D.; Cheben, P.; Boeuf, F.; Baudot, C.; Vivien, L. L-Shaped Fiber-Chip Grating Couplers with High Directionality and Low Reflectivity Fabricated with Deep-UV Lithography. Opt. Lett. 2017, 42, 3439–3442.
49. Michaels, A.; Yablonovitch, E. Inverse Design of near Unity Efficiency Perfectly Vertical Grating Couplers. Opt. Express 2018, 26, 4766–4779.
50. Zhang, Z.; Chen, X.; Cheng, Q.; Khokhar, A. Z.; Yan, X.; Huang, B.; Chen, H.; Liu, H.; Li, H.; Thomson, D. J.; Reed, G. T. High-Efficiency Apodized Bidirectional Grating Coupler for Perfectly Vertical Coupling. Opt. Lett. 2019, 44, 5081–5084.
51. Tang, Y.; Wang, Z.; Wosinski, L.; Westergren, U.; He, S. Highly Efficient Nonuniform Grating Coupler for Silicon-on-Insulator Nanophotonic Circuits. Opt. Lett. 2010, 35, 1290–1292.
52. Chen, X.; Li, C.; Fung, C.K.Y.; Lo, S.M.G.; Tsang, H.K. Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers. IEEE Photonics Technology Letters 2010, 22, 1156–1158.
53. Roelkens, G.; Thourhout, D. V.; Baets, R. High Efficiency Grating Coupler between Silicon-on-Insulator Waveguides and Perfectly Vertical Optical Fibers. Opt. Lett. 2007, 32, 1495–1497.
54. Xia, C.; Chao, L.; Hon Ki, T. Fabrication-Tolerant Waveguide Chirped Grating Coupler for Coupling to a Perfectly Vertical Optical Fiber. IEEE Photonics Technol. Lett. 2008, 20, 1914–1916.
55. Yu, L.; Liu, L.; Zhou, Z.; Wang, X. High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections. Opt. Commun. 2015, 355, 161–166.
56. Liu, L.; Zhang, J.; Zhang, C.; Wang, S.; Jin, C.; Chen, Y.; Chen, K.; Xiang, T.; Shi, Y. Silicon waveguide grating coupler for perfectly vertical fiber based on a tilted membrane structure. Opt. Lett. 2016, 41, 820–823.
57. Tong, Y.; Zhou, W.; Tsang, H.K. Efficient perfectly vertical grating coupler for multi-core fibers fabricated with 193 nm DUV lithography. Opt. Lett. 2018, 43, 5709–5712.
58. Xia, C.; Chao, L.; Hon Ki, T. Etched Waveguide Grating Variable 1*2 Splitter/Combiner and Waveguide Coupler. IEEE Photonics Technol. Lett. 2009, 21, 268–270.
59. Zou, J.; Yu, Y.; Ye, M.; Liu, L.; Deng, S.; Zhang, X. A four-port polarization diversity coupler for vertical fiber-chip coupling. In Proceedings of the Optical Fiber Communication Conference 2015, Washington, DC, USA, 22–26 March; p. W2A. 10.
60. Zhu, L.; Yang, W.; Chang-Hasnain, C. Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber. Opt. Express 2017, 25, 18462–18473.
61. Cheng, L.; Mao, S.; Li, Z.; Han, Y.; Fu, H.Y. Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues. Micromachines 2020, 11, 666.
62. Alonso-Ramos, C.; Cheben, P.; Ortega-Monux, A.; Schmid, J.H.; Xu, D.X.; Molina-Fernandez, I. Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95%. Opt. Lett. 2014, 39, 5351–5354.
63. Chen, Y.; Halir, R.; Molina-Fernandez, I.; Cheben, P.; He, J.J. High-efficiency apodized-imaging chip-fiber grating coupler for silicon nitride waveguides. Opt. Lett. 2016, 41, 5059–5062.
64. Chen, Y.; Dominguez Bucio, T.; Khokhar, A.Z.; Banakar, M.; Grabska, K.; Gardes, F.Y.; Halir, R.; Molina-Fernandez, I.; Cheben, P.; He, J.J. Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides. Opt. Lett. 2017, 42, 3566–3569.
65. Chen, X.; Thomson, D.J.; Crudginton, L.; Khokhar, A.Z.; Reed, G.T. Dual-etch apodised grating couplers for efficient fibre-chip coupling near 1310 nm wavelength. Opt. Express 2017, 25, 17864–17871.
66. Van Laere, F.; Roelkens, G.; Ayre, M.; Schrauwen, J.; Taillaert, D.; Van Thourhout, D.; Krauss, T.F.; Baets, R. Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides. J. Lightwave Technol. 2007, 25, 151–156.
67. Romero-Garcia, S.; Merget, F.; Zhong, F.; Finkelstein, H.; Witzens, J. Visible wavelength silicon nitride focusing grating coupler with AlCu/TiN reflector. Opt. Lett. 2013, 38, 2521–2523.
68. Benedikovic, D.; Cheben, P.; Schmid, J.H.; Xu, D.X.; Lamontagne, B.; Wang, S.; Lapointe, J.; Halir, R.; Ortega-Monux, A.; Janz, S.; et al. Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides. Opt. Express 2015, 23, 22628–22635.
69. Roelkens, G.; Thourhout, D.V.; Baets, R. High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay. Opt. Express 2006, 14, 11622–11630.
70. Mossberg, T.; Greiner, C.; Iazikov, D. Interferometric amplitude apodization of integrated gratings. Opt. Express 2005, 13, 2419–2426.
71. He, L.; Liu, Y.; Galland, C.; Lim, A.E.-J.; Lo, G.-Q.; Baehr-Jones, T.; Hochberg, M. A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography. IEEE Photonics Technol. Lett. 2013, 25, 1358–1361.
72. Marchetti, R.; Lacava, C.; Khokhar, A.; Chen, X.; Cristiani, I.; Richardson, D.J.; Reed, G.T.; Petropoulos, P.; Minzioni, P. High-efficiency grating-couplers: Demonstration of a new design strategy. Sci. Rep. 2017, 7, 16670.
73. Wang, Y.; Yun, H.; Lu, Z.; Bojko, R.; Shi, W.; Wang, X.; Flueckiger, J.; Zhang, F.; Caverley, M.; Jaeger, N.A.F.; et al. Apodized Focusing Fully Etched Subwavelength Grating Couplers. IEEE Photonics J. 2015, 7, 1–10.
74. Halir, R.; Cheben, P.; Janz, S.; Xu, D.X.; Molina-Fernandez, I.; Wanguemert-Perez, J.G. Waveguide grating coupler with subwavelength microstructures. Opt. Lett. 2009, 34, 1408–1410.
75. Espinola, R.L.; Tsai, M.C.; Yardley, J.T.; Osgood, R.M. Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator. IEEE Photonics Technology Letters 2003, 15, 1366–1368.
76. Jayatilleka, H.; Murray, K.; Guillén-Torres, M. Á.; Caverley, M.; Hu, R.; Jaeger, N. A. F.; Chrostowski, L.; Shekhar, S. Wavelength Tuning and Stabilization of Microring-Based Filters Using Silicon in-Resonator Photoconductive Heaters. Opt. Express 2015, 23, 25084–25097.
77. Zhang, Z.; Zhang, K.; Cheng, Q.; Li, M.; Liu, T.; Huang, B.; Zhang, Z.; Liu, H.; Li, H.; Niu, P.; Chen, H. High-Efficiency Two-Dimensional Perfectly Vertical Grating Coupler With Ultra-Low Polarization Dependent Loss and Large Fibre Misalignment Tolerance. IEEE Journal of Quantum Electronics 2021, 57, 1–7.
78. Chen, B.; Zhang, X.; Hu, J.; Zhu, Y.; Cai, X.; Chen, P.; Liu, L. Two-Dimensional Grating Coupler on Silicon with a High Coupling Efficiency and a Low Polarization-Dependent Loss. Opt. Express 2020, 28, 4001–4009.
79. Xue, Y.; Chen, H.; Bao, Y.; Dong, J.; Zhang, X. Two-Dimensional Silicon Photonic Grating Coupler with Low Polarization-Dependent Loss and High Tolerance. Opt. Express 2019, 27, 22268–22274.
80. https://www.tsri.org.tw/CommonUtilServlet?type=2.84&file=devicesd1s1a1CFd1s1a1RDT005_A.pdf
81. https://www.tsri.org.tw/CommonUtilServlet?type=2.84&file=devicesd1s1a1CFd1s1a1L22-A_%E6%A9%9F%E5%8F%B0%E7%B0%A1%E4%BB%8B20230414.pdf
82. https://www.tsri.org.tw/CommonUtilServlet?type=2.84&file=devicesd1s1a1CFd1s1a1L22-C_%E6%A8%99%E6%BA%96%E8%A3%BD%E7%A8%8B_20230512(1).pdf
83. https://www.tsri.org.tw/CommonUtilServlet?type=2.84&file=devicesd1s1a1CFd1s1a1E10_A.pdf
84. https://www.tsri.org.tw/CommonUtilServlet?type=2.84&file=devicesd1s1a1CFd1s1a1C5_C.doc
85. https://www.tsri.org.tw/CommonUtilServlet?type=2.84&file=devicesd1s1a1CFd1s1a1M25_A.pdf
86. https://www.tsri.org.tw/CommonUtilServlet?type=2.84&file=devicesd1s1a1CFd1s1a1L6_A.doc
87. https://www.tsri.org.tw/CommonUtilServlet?type=2.84&file=devicesd1s1a1CFd1s1a1L13_A.doc
88. https://en.wikipedia.org/wiki/Fabry%E2%80%93P%C3%A9rot_interferometer
89. Asano, T.; Noda, S. Optimization of photonic crystal nanocavities based on deep learning. Opt. Express 2018, 26, 32704–32717.
90. Li, R.; Gu, X.; Li, K.; Huang, Y.; Li, Z.; Zhang, Z. Deep learning-based modeling of photonic crystal nanocavities. Opt. Mater. Express 2021, 11, 2122–2133.
91. Liu, D.; Tan, Y.; Khoram, E.; Yu, Z. Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures. ACS Photonics 2018, 5, 1365–1369.
92. Hooten, S.; Beausoleil, R.G.; Vaerenbergh, T.V. Inverse design of grating couplers using the policy gradient method from reinforcement learning. Nanophotonics 2021, 10, 3843–3856.
93. Benedikovic, D.; Alonso-Ramos, C.; Guerber, S.; Le Roux, X.; Cheben, P.; Dupré, C.; Szelag, B.; Fowler, D.; Cassan, É.; Marris-Morini, D.; et al. Sub-decibel silicon grating couplers based on L-shaped waveguides and engineered subwavelength metamaterials. Opt. Express 2019, 27, 26239–26250.
94. Bozzola, A.; Carroll, L.; Gerace, D.; Cristiani, I.; Andreani, L.C. Optimising apodized grating couplers in a pure SOI platform to −0.5 dB coupling efficiency. Opt. Express 2015, 23, 16289–16304.
95. Chung-Chih Lin; Audrey Na; Yi-Kuei Wu; Likarn Wang; Neil Na. Optimization of Grating Coupler over Single-Mode Silicon-on-Insulator Waveguide to Reach < 1 dB Loss through Deep-Learning-Based Inverse Design. Photonics 2024, 11, 267.
96. Marchetti, R.; Lacava, C.; Khokhar, A.; Chen, X.; Cristiani, I.; Richardson, D.J.; Reed, G.T.; Petropoulos, P.; Minzioni, P. High-efficiency grating-couplers: Demonstration of a new design strategy. Sci. Rep. 2017, 7, 16670–16678.
97. Miyatake, Y.; Sekine, N.; Toprasertpong, K.; Takagi, S.; Takenaka, M. Computational design of efficient grating couplers using artificial intelligence. Jpn. J. Appl. Phys. 2020, 59, SGGE09
98. Selvaraja, S.K.; Vermeulen, D.; Schaekers, M.; Sleeckx, E.; Bogaerts, W.; Roelkens, G.; Dumon, P.; Van Thourhout, D.; Baets, R. Highly efficient grating coupler between optical fiber and silicon photonic circuit. In Proceedings of the 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, Baltimore, MD, USA, 2–4 June 2009.
99. Ding, Y.; Peucheret, C.; Ou, H.; Yvind, K. Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency. Opt. Lett. 2014, 39, 5348–5350.
100. Lin, C.-C.; Chu, A.; Na, N.; Wang, L.-K. Design and Simulation of Micro Lenses for Silicon-based Photodetectors. Optics & Photonics Taiwan International Conference 2018.
101. A. Fresnel. Calcul de l'intensite de la lumiere au centre de l'ombre d'un ecran. Oeuvres completes d' Augustin Fresnel 1866, Vol.1, Note 1, 365.
102. W. Däschner, R. Stein, P. Long, C. Wu, and S. Lee, "One-step lithography for mass production of multilevel diffractive optical elements using High Energy Beam Sensitive (HEBS) gray-level mask," in Diffractive Optics and Micro-Optics, OSA Technical Digest (Optica Publishing Group, 1996), paper DWD.4
103. W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, “Simulation and experimental study of gray-tone lithography for the fabrication of arbitrary shaped surfaces,” in Proceedings of the IEEE Workshop on Micro Electro Mechanical Systems 1994, MEMS ’94 (Institute of Electrical and Electronics Engineers, 1994), pp. 205–210.
104. B. Morgan and C. M. Waits, “Development of deep silicon phase Fresnel lens using gray-scale lithography and deep reactive ion etching,” IEEE J. Microelectromech 2004, Syst. 13, 113– 120.
105. J. W. Sung, H. Hockel, J. D. Brown, and E. G. Johnson, “Development of a two-dimensional phase-grating mask for fabrication of an analog-resist profile,” Applied Optics 2006, Vol. 45, Issue 1, pp. 33-43.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *