帳號:guest(18.191.129.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許至瑄
作者(外文):Hsu, Chih-Hsuan
論文名稱(中文):光感DNA複合物之週期性結構製備及特性研究
論文名稱(外文):Fabrication and characterization of photo-triggered DNA nanocomposite grating structures
指導教授(中文):洪毓玨
指導教授(外文):Hung, Yu-Chueh
口試委員(中文):黃勝廣
李明昌
口試委員(外文):Hwang, Sheng-Kwang
Lee, Ming-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:104066540
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:53
中文關鍵詞:脫氧核醣核酸光感奈米複合物週期性結構
外文關鍵詞:DNAphoto-triggered nanocompositegrating structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:143
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
生物性的高分子材料在近年來廣泛的被利用,其中脫氧核醣核酸(deoxyribonucleic acid, DNA)材料由於可以被環境分解且無毒性,並且有特殊的雙股螺旋結構,以及對金屬的親和力高,很常被當作金屬離子的模板,因為具有這些特性,DNA複合物不只在生物學上,也在光電領域中有許多應用,例如用在有機發光元件、有機記憶體等元件上。此外,由於金屬奈米粒子具有表面電漿共振的特性,不同的大小以及種類的金屬奈米粒子會有不同的共振波長與特性,近年來在太陽能電池以及增強表面拉曼散射上也有很多的應用。
於此研究中,我們結合 DNA模板特性與光還原奈米粒子的技術,藉由控制照光區域與強度,於DNA高分子薄膜上製作出毫米至微米等級的週期性奈米粒子光柵結構。第一部分的研究,我們利用光還原法在DNA材料中還原銀奈米粒子,於不同製備參數,藉由吸收光譜的觀察了解奈米粒子的生成情況,並觀察各個材料對光還原反應的影響,找出最佳化的配製條件,並且利用這個參數進行直接塗佈及旋轉塗佈的鍍膜。第二部分我們利用光罩以及355nm的雷射架設的干涉儀控制照光的位置,在DNA材料薄膜上產生週期性的奈米粒子結構,並且藉由不同的觀測方式,包括光譜儀,光學顯微鏡,掃描式電子顯微鏡,觀察結構不同尺度的變化,最終在直接塗佈法的薄膜中可以做出毫米至幾十微米之週期結構。我們的研究展示了DNA‐金屬奈米粒子週期性結構可利用簡易的照光方法製備,此技術將有潛力運用於感測技術以及增強表面拉曼散射中。

Organic biopolymer materials have been widely employed in various applications in recent years. Among all, deoxyribonucleic acid (DNA) biopolymer has several unique material properties, including the double helix structure, affinity with metal ions, non‐toxic and environmentally friendly characteristics. It has been a good template for metals and has been widely used not only in biology but also in optoelectronic devices, such as organic light‐emitting diodes (OLEDs) and organic memory devices. Metallic nanoparticles exhibit tunable surface plasmon resonances subject to different materials and dimensions. Such property has also drawn much attention in the applications of solar cell and surface enhanced Raman scattering.
In this study, we combine the templating property of DNA and a photo‐triggered technique to fabricate DNA‐nanoparticle gratings with a period from millimeter to micrometer by light exposure. First part of the study, we employed the phototriggered method to synthesize metallic nanoparticles in a DNA biopolymer matrix.By varying the preparation conditions, we examined the photochemical synthesis processes by optical absorption spectra. The materials were further optimized and used for thin film deposition by drop casting and spin‐coating. In the second part of the study, we fabricated periodic grating structures on the DNA biopolymer film by light exposure. We define the exposure areas by the employment of a mask and an interferometer. The structures were characterized by various methods, including optical spectrometer, optical microscope, scanning electron microscope. The results show that DNA‐nanoparticle grating structures can be fabricated by light exposure with a period ranging from millimeters to tens of micrometers. Our demonstration reveals the potential of using light irradiation for the fabrication of DNA‐based grating structures, which holds promise for the applications of sensing and surface enhanced Raman scattering.
第一章 緒論 p.1
1.1 前言 p.1
1.2 DNA生物高分子材料介紹及應用 p.1
1.3 金屬奈米粒子的製造與應用 p.4
1.4 光阻與奈米粒子週期性結構 p.9
1.5 實驗目標與研究動機 p.15

第二章 實驗方法 p.16
2.1 材料製備 p.16
2.2 製程儀器 p.18
2.3 量測儀器 p.20

第三章 DNA-CTMA 銀奈米複合材料特性之探討 p.24
3.1 生成機制討論 p.24
3.2 材料之探討與光譜吸收度分析 p.25

第四章 光柵結果與討論 p.32
4.1 較大尺度(>1 mm)製作與量測 p.32
4.2 干涉光柵討論 p.39
4.3 旋轉塗佈法之分析 p.45

第五章 結論與未來展望 p.47
參考文獻 p.48





[1] X. Liu, H. Diao, and N. Nishi, “Applied chemistry of natural DNA,” Chemical Society Reviews 37, 2745–2757 (2008).

[2] J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Applied Physics Letters 88, 171109 (2006).

[3] K. G. Stamplecoskie and J. C. Scaiano, “Light emitting diode irradiation can con- trol the morphology and optical properties of silver nanoparticles,” Journal of the American Chemical Society 132, 1825–1827 (2010).

[4] S. Kundu, “Formation of self-assembled Ag nanoparticles on DNA chains with en- hanced catalytic activity,” Physical Chemistry Chemical Physics 15, 14107–14119 (2013).

[5] S. Kundu and M. Jayachandran, “The self-assembling of DNA-templated Au nanoparticles into nanowires and their enhanced SERS and catalytic applications,” RSC Advances 3, 16486–16498 (2013).

[6] K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spec- troscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).

[7] M. I. Stockman, “Nanoplasmonics: The physics behind the applications,” Phys.Today 64, 39–44 (2011).

[8] Y. Wang, X. Yan, and R. Dong, “Organic memristive devices based on silver nanopar- ticles and DNA,” Organic Electronics 15, 3476–3481 (2014).

[9] M. Sˇkerenˇ, J. Svoboda, and P. Fiala, “Advanced matrix laser lithography for fabrica- tion of photonic micro-structures,” Journal of the European Optical Society-Rapid publications 7 (2012).

[10] A. K. Yetisen, H. Butt, F. da Cruz Vasconcellos, Y. Montelongo, C. A. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner et al., “Light-directed writing of chemically tunable narrow-band holographic sensors,” Advanced Optical Materials 2, 250–254 (2014).

[11] R. Murillo, H. Van Wolferen, L. Abelmann, and J. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectronic engineering 78, 260–265 (2005).

[12] M. Ellman, A. Rodr´ıguez, N. P´erez, M. Echeverria, Y. Verevkin, C. Peng, T. Berthou, Z. Wang, S. Olaizola, and I. Ayerdi, “High-power laser interference lithography pro- cess on photoresist: Effect of laser fluence and polarisation,” Applied Surface Science
255, 5537–5541 (2009).


[13] J.-H. Seo, J. H. Park, S.-I. Kim, B. J. Park, Z. Ma, J. Choi, and B.-K. Ju, “Nanopat- terning by laser interference lithography: applications to optical devices,” Journal of nanoscience and nanotechnology 14, 1521–1532 (2014).

[14] E. Nadal, N. Barros, H. Gl´enat, J. Laverdant, D. Schmool, and H. Kachkachi, “Plasmon-enhanced diffraction in nanoparticle gratings fabricated by in situ photo- reduction of gold chloride doped polymer thin films by laser interference patterning,” Journal of Materials Chemistry C 5, 3553–3560 (2017).

[15] J. D. Watson and H. C. Crick, “Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid,” Nature 171, 737–738 (1953).

[16] K. Aoi, A. Takasu, and M. Okada, “DNA-based polpoly hybrids. part 1. compatibility and physical properties of poly(vinyl alcohol)/DNA sodium salt blend,” Polymer 41,
2847–2853 (2000).

[17] C. Aleman, B. Teixeira-Dias, D. Zanuy, F. Estrany, E. Armelin, and L. J. del Valle, “A comprehensive study of the interactions between DNA and poly(3,4- ethylenedioxythiophene),” Polymer 50, 1965–1974 (2009).

[18] J. Zhang, Y. Liu, Y. Ke, and H. Yan, “Periodic square-like gold nanoparticle arrays template by self-assembled 2d DNA nanogrids on a surface,” Nano Letters 6, 248–251 (2006).

[19] H. J. Kim, Y. Roh, S. K. Kim, and B. Hong, “Fabrication and characterization of DNA-templated conductive gold nanoparticle chains,” Journal of Applied Physics 105, 074302 (2009).

[20] Y. He, T. Ye, M. Su, C.Zhang, A. E. Ribbe, W. Jiang, and C. Mao, “Hierarchical self- assembly of DNA into symmetric supramolecular Polyedral,” Nature 452, 198–201 (2008).

[21] A. Steckl, H. Spaeth, K. Singh, J. Grote, and R. Naik, “Chirality of sulforhodamine dye molecules incorporated in DNA thin films,” Applied Physics Letters 93, 193903 (2008).

[22] L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)- cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chemistry of Materials 13, 1273–1281 (2001).

[23] P. Stadler, K. Oppelt, T. Singh, J. Grote, R. Schwoediauer, S. Bauer, H. Piglmayer- Brezina, D. Baeuerle, and N. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid DNA gate dielectric,” Organic Electronics 8,
648–654 (2007).

[24] P. P. Yaney, E. M. Heckman, and J. G. Grote, “Resistivity and electric-field poling behaviors of DNA-based polymers compared to selected non-DNA polymers,” in “Nanobiotronics,” (International Society for Optics and Photonics, 2007), p. 664605.

[25] Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified apontaneous emission from fluorescent-dye-doped DNA-surfactant complex films,” Advanced Materials 12,
1281–1283 (2000).

[26] V. Amendola, S. Polizzi, and M. Meneghetti, “Laser ablation synthesis of gold nanoparticles in organic solvents,” The Journal of Physical Chemistry B 110, 7232–
7237 (2006).

[27] A. A. Ponce and K. J. Klabunde, “Chemical and catalytic activity of copper nanopar- ticles prepared via metal vapor synthesis,” Journal of Molecular Catalysis A: Chem- ical 225, 1–6 (2005).

[28] K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, “Preparation and characterization of Au colloid monolayers,” Analytical Chemistry 67, 735–743 (1995).

[29] M. T. Reetz and W. Helbig, “Size-selective synthesis of nanostructured transition metal clusters,” Journal of the American Chemical Society 116, 7401 (1994).

[30] N. A. Dhas and A. Gedanken, “Sonochemical synthesis of molybdenum oxide and molybdenum carbide silica nanocomposites,” Chemistry of Materials 9, 3144–3154 (1997).

[31] L. C. Courrol, F. R. de Oliveira Silva, and L. Gomes, “A simple method to synthesize silver nanoparticles by photo-reduction,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 305, 54–57 (2007).

[32] K. L. McGilvray, M. R. Decan, D. Wang, and J. C. Scaiano, “Facile photochemi- cal synthesis of unprotected aqueous gold nanoparticles,” Journal of the American Chemical Society 128, 15980–15981 (2006).

[33] E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, “DNA-templated assembly and electrode attachment of a conducting silver wire,” Nature 391, 775 (1998).

[34] J. S. Sohn, Y. W. Kwon, J. I. Jin, and B. W. Jo, “DNA-templated preparation of gold nanoparticles,” Molecules 16, 8143–8151 (2011).

[35] M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, and C. A. Mirkin, “Templated techniques for the synthesis and assembly of plasmonic nanostructures,” Chemical Reviews 111, 3736–3827 (2011).

[36] J. Wei and R. Wang, “Maskless direct laser writing with visible light: Breaking through the optical resolving limit with cooperative manipulations of nonlinear re- verse saturation absorption and thermal diffusion,” Journal of Applied Physics 115,
123102 (2014).

[37] C. P. Tsangarides, A. K. Yetisen, F. da Cruz Vasconcellos, Y. Montelongo, M. M. Qasim, T. D. Wilkinson, C. R. Lowe, and H. Butt, “Computational modelling and
characterisation of nanoparticle-based tuneable photonic crystal sensors,” RSC Ad- vances 4, 10454–10461 (2014).

[38] A. K. Yetisen, I. Naydenova, F. da Cruz Vasconcellos, J. Blyth, and C. R. Lowe, “Holographic sensors: three-dimensional analyte-sensitive nanostructures and their applications,” Chemical reviews 114, 10654–10696 (2014).

[39] C. Lu and R. Lipson, “Interference lithography: a powerful tool for fabricating peri- odic structures,” Laser & Photonics Reviews 4, 568–580 (2010).

[40] H. A. van Wolferen and L. Abelmann, “Laser interference lithography,” in “Lithog- raphy: Principles, processes and materials,” (Nova Publishers, 2011).

[41] J.-H. Seo, J. Park, D. Zhao, H. Yang, W. Zhou, B.-K. Ju, and Z. Ma, “Large-area printed broadband membrane reflectors by laser interference lithography,” IEEE Photonics Journal 5, 2200106–2200106 (2013).

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *