帳號:guest(18.227.105.140)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳裕凱
作者(外文):Chen, Yu-Kai
論文名稱(中文):三維螺旋光子超穎材料能隙形成機制研究
論文名稱(外文):Origin and manipulation of band gaps in three-dimensional dielectric Helix Photonic Metamaterials
指導教授(中文):洪毓玨
指導教授(外文):Hung, Yu-Chueh
口試委員(中文):李明昌
傅建中
口試委員(外文):Lee, Ming-Chang
Fu, Chien-Chung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:104066537
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:62
中文關鍵詞:超穎材料三維光子超穎材料螺旋結構掌性結構光子能隙布拉格能隙混成能隙機制相位圖
外文關鍵詞:MetamaterialThree-dimensional Photonic MetamaterialHelix Photonic MetamaterialChiral photonic nanostructurePhotonic band gapBragg gapHybridization gapMechanism diagram
相關次數:
  • 推薦推薦:0
  • 點閱點閱:225
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
掌性光子超穎材料為近年來應用於奈米光學元件領域裡之指標性結構,其強響應旋光性以及圓二色性的特性吸引了許多關注,雖然掌性結構能透過適當的週期排列以及幾何參數建構,但若要與旋性光交互作用,螺旋結構則為最理想的模型系統。近十年來,介電質螺旋結構已有許多特性研究,隨著微機電奈米製程的快速進步,除了一維或二維光子晶體的製作與能隙探討已有詳細的理論建立之外,亦開始有團隊以包括斜向沉積技術、直接雷射寫入技術、全像蝕刻術等展現其製造之三維結構與對應之能隙,但並沒有團隊全盤的分析其三維螺旋光子超穎材料能隙生成的理論機制。

因此,在本研究中,我們利用液晶能隙分析理論與有限時域差分法,研究三維螺旋光子超穎材料中布拉格共振和混成現象的出現、演變與其交互作用所產生的多種情況,並提供三維光子超穎材料中從布拉格能隙到混成能隙再到散射區間轉換機制為目標導向的有效搜索標準,達成透過幾何參數調整,操控兩種能隙之間的出現的頻率、頻寬以及相對強度的目標。除了不須使用高折射率介電質,亦較二維光子超穎材料多了另一個操控之自由度,也將為光子超穎材料與奈米光學元件設計開起新的設計途徑。
Chiral photonic nanostructures provide a variety of fascinating properties, such as strong optical activity and circular dichroism, which can be applied in many optoelectronic devices. Although chiral motifs can be constructed by a variety of arrangements, the helix geometry is still an ideal model system to elucidate the interaction of circularly polarized (CP) light with a chiral medium. Dielectric helix structures have been studied for decades and the experimental implementation has been realized on various platforms, such as glancing angle deposition (GLAD), direct laser writing (DLW), and holographic lithography. However, these studies are predominately focused on presenting the existence of gaps, without addressing the underlying mechanisms.
In this study, we use an analytical model adapted from liquid crystal and the numerical simulation based on FDTD to study the emergence and evolution of both Bragg resonance and hybridization phenomenon in a 3D dielectric helix structure. We show that the interplay of gaps with different mechanisms gives rise to versatile scenarios. We also provide a diagram that illustrates the scenarios with respect to different geometrical parameters. Such 3D configuration provides another degree of freedom to tailor the relative position between the two bands by geometrical parameters without the use of high-permittivity dielectrics, opening a new horizon to design optical devices.
第一章 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1 光子晶體與超穎材料介紹 . . . . . . . . . . . . . . . . . . . . 1
1.2 掌性材料介紹 . . . . . . . . . . . . . . . . . . . . . . . . .3
1.3 螺旋光子超穎材料 . . . . . . . . . . . . . . . . . . . . . . .3
1.3.1 螺旋光子超穎材料光學特性. . . . . . . . . . . . . . . . . . . 3
1.3.2 三維光子超穎材料製造 . . . . . . . . . . . . . . . . . . . . .6
1.4 混成能隙. . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.5 動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
第二章 實驗方法 . . . . . . . . . . . . . . . . . . . . . . . . . . .10
2.1 數值方法 . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 時域有限差分法 . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 平面波展開法 . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 能隙分析 . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 約化布里淵區(The irreducible Brillouin Zone) . . . . . . . . 12
2.2.2 光子超穎材料色散關係 . . . . . . . . . . . . . . . . . . . . .13
2.2.3 圓二色性(Circular Dichroism, CD) . . . . . . . . . . . . . .13
2.3 模擬設定. . . . . . . . . . . . . . . . . . . . . . . . . . . .15
第三章 三維螺旋光子超穎材料能隙形成機制研究 . . . . . . . . . . . . . . 17
3.1 色散關係與光學反射頻譜 . . . . . . . . . . . . . . . . . . . . 17
3.2 三維螺旋光子超穎材料幾何構形與能隙變化探討 . . . . . . . . . . . 19
3.2.1 右旋三維反射頻譜分析與結構幾何參數 . . . . . . . . . . . . . 20
3.2.2 左旋三維反射頻譜分析與結構幾何參數 . . . . . . . . . . . . . 22
3.3 機制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 布拉格能隙成因 . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 非布拉格能隙成因 . . . . . . . . . . . . . . . . . . . . . . 25
3.4 三維反射頻譜分析 . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 橫向單位間距與頻率. . . . . . . . . . . . . . . . . . . . . .31
3.5 運用三維結構週期性操控能隙機制 . . . . . . . . . . . . . . .33
第四章 運用解析解近似三維螺旋光子超穎材料能隙 . . . . . . . . . . . 34
4.1 布拉格能隙與解析解 . . . . . . . . . . . . . . . . . . . . . 34
4.1.1 螺旋奈米雕刻薄膜解析解 . . . . . . . . . . . . . . . . . . . 34
4.1.2 運用代數變換與三維迭代近似法加快數值計算 . . . . . . . . . . 36
4.1.3 布拉格能隙能隙中心波長預測 . . . . . . . . . . . . . . . . . 37
4.1.4 結構修正 . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.5 結構修正後布拉格能隙能隙中心頻率預測 . . . . . . . . . . . . 39
4.1.6 布拉格能隙頻寬預測模型. . . . . . . . . . . . . . . . . . . .43
4.1.7 頻寬預測結果. . . . . . . . . . . . . . . . . . . . . . . . .44
4.1.8 體積分率與近似誤差. . . . . . . . . . . . . . . . . . . . . .45
4.2 混成能隙趨勢分析. . . . . . . . . . . . . . . . . . . . . . .46
4.2.1 本徵模態演變與橫向單位間距. . . . . . . . . . . . . . . . . .46
4.2.2 本徵模態演變與縱向週期性. . . . . . . . . . . . . . . . . . .47
4.3 機制相位圖 . . . . . . . . . . . . . . . . . . . . . . . . . 47
第五章 結果與未來展望 . . . . . . . . . . . . . . . . . . . . . . . 52
參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53


[1] J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: A numerical parameter study,” Opt. Express 18, 1059–1069 (2010).

[2] L. Wu, Z. Yang, M. Zhao, P. Zhang, Z. Lu, Y. Yu, S. Li, and X. Yuan, “What makes single-helical metamaterials generate “pure” circularly polarized light?” Optics Express 20, 1552–1560 (2012).

[3] E. Alonso Redondo, M. Schmitt, Z. Urbach, C. Hui, R. Sainidou, P. Rembert, K. Matyjaszewski, M. Bockstaller, and G. Fytas, “A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids,” Nature communications 6 (2015).

[4] W. Setyawan and S. Curtarolo, “High-throughput electronic band structure calculations: Challenges and tools,” Computational Materials Science 49, 299–312 (2010).

[5] A. Lakhtakia and M. W. Horn, “Bragg-regime engineering by columnar thinning of chiral sculptured thin films,” Optik-International Journal for Light and Electron Optics 114, 556–560 (2003).

[6] J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Advanced Optical Materials 3, 1411–1417 (2015).

[7] M. Saba, B. D. Wilts, J. Hielscher, and G. E. Schr‥oder-Turk, “Absence of circular polarisation in rflections of butterfly wing scales with chiral gyroid structure,” Materials Today: Proceedings 1, 193–208 (2014).

[8] A. Balmakou, I. Semchenko, and M. Nagatsu, “Broadband infrared quarter wave plate realized through perpendicular-to-helical-axis wave propagation in a helix array,” Opt. Lett. 38, 3499–3502 (2013).

[9] S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Applied Physics Letters 105, 051107 (2014).

[10] M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schr‥oder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Physical Review Letters 106, 103902 (2011).

[11] T. H. Kao, L. Y. C. Chien, and Y. C. Hung, “Dual circular polarization gaps in helix photonic metamaterials,” Opt. Express 23, 24416–24425 (2015).

[12] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).

[13] M. Thiel, G. von Freymann, and M. Wegener, “Layer-by-layer three-dimensional chiral photonic crystals,” Optics Letters 32, 2547–2549 (2007).

[14] M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schr‥oder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nature Photonics 7, 801–805 (2013).

[15] M. Faryad and A. Lakhtakia, “The circular bragg phenomenon,” Advances in Optics and Photonics 6, 225–292 (2014).

[16] M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Three-dimensional chiral photonic superlattices,” Optics Letters 35, 166–168 (2010).

[17] J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters 85, 3966–3969 (2000).

[18] W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Materials Today 9, 28–35 (2006).

[19] J. B. Pendry and D. R. Smith, “Reversing light: Negative refraction,” Physics Today 57, 37–44 (2003).

[20] I. Bita and E. L. Thomas, “Structurally chiral photonic crystals with magneto-optic activity: indirect photonic bandgaps, negative refraction, and superprism effects,” JOSA B 22, 1199–1210 (2005).

[21] Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005).

[22] F. Dominec, C. Kadlec, H. Nemec, P. Kuzel, and F. Kadlec, “Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods,” Opt. Ex- press 22, 30492–30503 (2014).

[23] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters 58, 2486–2489 (1987).

[24] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters 58, 2059–2062 (1987).

[25] K. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Physical Review Letters 65, 3152 (1990).

[26] E. Yablonovitch, T. Gmitter, and K. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Physical review letters 67, 2295 (1991).

[27] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (2008).

[28] M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120 sharply bent single-line-defect photonic crystal waveguide,” Applied physics letters 76, 952–954 (2000).

[29] Y. X. Fan, T. Q. Sang, T. Liu, L. L. Xu, and Z. Y. Tao, “Single-mode interface states in heterostructure waveguides with bragg and non-bragg gaps,” Scientific Reports 7 (2017).

[30] S. G. Lee, C. S. Kee, E. S. Lee, and T. I. Jeon, “Photonic band anti-crossing in a coupled system of a teraherz plasmonic crystal film and a metal air-gap waveguide,” Journal of Applied Physics 110, 033102 (2011).

[31] P. Markos, “Fano resonances and band structure of two-dimensional photonic struc- tures,” Physical Review A 92, 043814 (2015).

[32] B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Optics letters 37, 3756–3758 (2012).

[33] K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semi- conductor nanowires and nanowire arrays: Relating leaky waveguide modes to bloch photonic crystal modes,” Journal of Applied Physics 116, 153106 (2014).

[34] D. R. Abujetas, R. Paniagua-Dominguez, and J. Sanchez-Gil, “Unraveling the janus role of mie resonances and leaky guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2, 921–929 (2015).

[35] T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics letters 22, 961–963 (1997).

[36] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).

[37] A. Purvis, H. Toriz-Garcia, J. Cowling, G. Williams, L. Seed, R. McWilliam, F. Soulard, and P. Ivey, “Holographic lithography,” in “Digital Holography and Three-Dimensional Imaging,” (Optical Society of America, 2014), pp. DW1B–1.

[38] M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Advanced Materials 19, 207–210 (2007).

[39] M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Advanced Materials 21, 4680–4682 (2009).

[40] S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Optics letters 22, 132–134 (1997).

[41] V. C. Venugopal, “Three-dimensional periodic chiral sculptured thin films,” Journal of Nanophotonics 7, 073502–073502 (2013).

[42] B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon et al.,“Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).

[43] P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast nonlinear response of gold gyroid three-dimensional metamaterials,” Physical Review Applied 2, 044002 (2014).

[44] J. W. S. Rayleigh, “On the remarkable phenomenon of crystalline re?exion described by prof. stokes,” Philosophical Magazine 26, 256–265 (1888).

[45] J. C. W. Lee and C. Chan, “Polarization gaps in spiral photonic crystals,” Opt. Express 13, 8083–8088 (2005).

[46] J. Hung, “Optical activities of micro-spiral photonic crystals fabricated by multi- beam holographic lithography,” Journal of Optics 13, 119501 (2011).

[47] H. K. Bisoyi and Q. Li, “Light-directing chiral liquid crystal nanostructures: From 1d to 3d,” Accounts of Chemical Research 47, 3184–3195 (2014). PMID: 25181560.

[48] I. Abdulhalim, R. Weil, and L. Benguigui, “Dispersion and attenuation of the eigenwaves for light propagation in heiicoidal liquid crystals,” Liquid Crystals 1, 155–167 (1986).

[49] Y. Ye and S. He, “polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Applied Physics Letters 96, 203501 (2010).

[50] Y. R. Li and Y. C. Hung, “Dispersion-free broadband optical polarization rotation based on helix photonic metamaterials,” Optics Express 23, 16772–16781 (2015).

[51] Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Optical Engineering 39, 1863–1868 (2000).

[52] Z. Y. Xie, L. G. Sun, G. Z. Han, and Z. Z. Gu, “Optical switching of a birefringent photonic crystal,” Advanced Materials 20, 3601–3604 (2008).

[53] S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3d extended self-assembled gold metamaterials with enhanced light transmission,” Advanced Materials 25, 2713–2716 (2013).

[54] S. S. Oh, A. Demetriadou, S. Wuestner, and O. Hess, “On the origin of chirality in nanoplasmonic gyroid metamaterials,” Advanced Materials 25, 612–617 (2013).

[55] H. Y. Hsueh, H. Y. Chen, Y. C. Hung, Y. C. Ling, S. Gwo, and R. M. Ho, “Well defined multibranched gold with surface plasmon resonance in near-infrared region from seeding growth approach using gyroid block copolymer template,” Advanced Materials 25, 1780–1786 (2013).

[56] Y. R. Li, R. M. Ho, and Y. C. Hung, “Plasmon hybridization and dipolar interaction on the resonances of helix metamaterials,” IEEE Photonics Journal 5, 2700510–2700510 (2013).

[57] K. Song, M. Wang, Z. Su, C. Ding, Y. Liu, C. Luo, X. Zhao, K. Bhattarai, and J. Zhou, “Low-loss broadband negative refractive index due to nonresonant 2d helical chiral metamaterial,” arXiv preprint arXiv:1705.02676 (2017).

[58] J. Noh, S. Huang, D. Leykam, Y. Chong, K. Chen, and M. C. Rechtsman, “Experimental observation of optical weyl points,” arXiv preprint arXiv:1610.01033 (2016).

[59] D. C. Hooper, A. G. Mark, C. Kuppe, J. T. Collins, P. Fischer, and V. K. Valev, “Strong rotational anisotropies affect nonlinear chiral metamaterials,” Advanced Materials 29 (2017).

[60] A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photonics spectra 40, 72 (2006).

[61] J. Serbin, A. Egbert, A. Ostendorf, B. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fr‥ohlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics,” Optics letters 28, 301–303 (2003).

[62] E. Dedman, D. Sharp, A. Turberfield, C. Blanford, and R. Denning, “Photonic crystals with a chiral basis by holographic lithography,” Photonics and Nanostructures Fundamentals and applications 3, 79–83 (2005).

[63] X. Wang, W. Gao, J. Hung, and W. Y. Tam, “Optical activities of large-area su8 microspirals fabricated by multibeam holographic lithography,” Applied optics 53, 2425–2430 (2014).

[64] K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996).

[65] J. A. Sherwin and A. Lakhtakia, “Ellipsoid-based model of structure-response relationships for chiral sculptured thin films,” in “International Symposium on Optical Science and Technology,” (International Society for Optics and Photonics, 2000), pp. 250–253.

[66] A. Lakhtakia, “Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik-International Journal for Light and Electron Optics 112, 145–148 (2001).

[67] V. C. Venugopal and A. Lakhtakia, “Electromagnetic plane wave response characteristics of non–axially excited slabs of dielectric thin film helicoidal bianisotropic mediums,” in “Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,” , vol. 456 (The Royal Society, 2000), vol. 456, pp. 125–161.

[68] K. Robbie, J. Sit, and M. Brett, “Advanced techniques for glancing angle deposition,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 16, 1115–1122 (1998).

[69] T. G. Mackay and W. S. Weiglhofer, “Homogenization of biaxial composite materials: dissipative anisotropic properties,” Journal of Optics A: Pure and Applied Optics 2, 426 (2000).

[70] L. Novotny, “Strong coupling, energy splitting, and level crossings: A classical per-spective,” American Journal of Physics 78, 1199–1202 (2010).

[71] N. Kaina, M. Fink, and G. Lerosey, “Composite media mixing bragg and local resonances for highly attenuating and broad bandgaps,” Scientific reports 3, 3240 (2013).

[72] K. P. Huy, J. C. Beugnot, J. C. Tchahame, and T. Sylvestre, “Strong coupling between phonons and optical beating in backward brillouin scattering,” Physical Review A 94, 043847 (2016).

[73] K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation 14, 302–307 (1966).

[74] Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/.

[75] R-soft BandSOLVE, Inc.: http://www.cybernet-ap.com.tw/zh.php?m=744&t=71.

[76] C. Kittel, Introduction to Solid State physics (John Wiley & Sons, Inc., 2005).
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *