|
[1] J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: A numerical parameter study,” Opt. Express 18, 1059–1069 (2010).
[2] L. Wu, Z. Yang, M. Zhao, P. Zhang, Z. Lu, Y. Yu, S. Li, and X. Yuan, “What makes single-helical metamaterials generate “pure” circularly polarized light?” Optics Express 20, 1552–1560 (2012).
[3] E. Alonso Redondo, M. Schmitt, Z. Urbach, C. Hui, R. Sainidou, P. Rembert, K. Matyjaszewski, M. Bockstaller, and G. Fytas, “A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids,” Nature communications 6 (2015).
[4] W. Setyawan and S. Curtarolo, “High-throughput electronic band structure calculations: Challenges and tools,” Computational Materials Science 49, 299–312 (2010).
[5] A. Lakhtakia and M. W. Horn, “Bragg-regime engineering by columnar thinning of chiral sculptured thin films,” Optik-International Journal for Light and Electron Optics 114, 556–560 (2003).
[6] J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Advanced Optical Materials 3, 1411–1417 (2015).
[7] M. Saba, B. D. Wilts, J. Hielscher, and G. E. Schr‥oder-Turk, “Absence of circular polarisation in rflections of butterfly wing scales with chiral gyroid structure,” Materials Today: Proceedings 1, 193–208 (2014).
[8] A. Balmakou, I. Semchenko, and M. Nagatsu, “Broadband infrared quarter wave plate realized through perpendicular-to-helical-axis wave propagation in a helix array,” Opt. Lett. 38, 3499–3502 (2013).
[9] S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Applied Physics Letters 105, 051107 (2014).
[10] M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schr‥oder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Physical Review Letters 106, 103902 (2011).
[11] T. H. Kao, L. Y. C. Chien, and Y. C. Hung, “Dual circular polarization gaps in helix photonic metamaterials,” Opt. Express 23, 24416–24425 (2015).
[12] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[13] M. Thiel, G. von Freymann, and M. Wegener, “Layer-by-layer three-dimensional chiral photonic crystals,” Optics Letters 32, 2547–2549 (2007).
[14] M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schr‥oder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nature Photonics 7, 801–805 (2013).
[15] M. Faryad and A. Lakhtakia, “The circular bragg phenomenon,” Advances in Optics and Photonics 6, 225–292 (2014).
[16] M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Three-dimensional chiral photonic superlattices,” Optics Letters 35, 166–168 (2010).
[17] J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters 85, 3966–3969 (2000).
[18] W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Materials Today 9, 28–35 (2006).
[19] J. B. Pendry and D. R. Smith, “Reversing light: Negative refraction,” Physics Today 57, 37–44 (2003).
[20] I. Bita and E. L. Thomas, “Structurally chiral photonic crystals with magneto-optic activity: indirect photonic bandgaps, negative refraction, and superprism effects,” JOSA B 22, 1199–1210 (2005).
[21] Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005).
[22] F. Dominec, C. Kadlec, H. Nemec, P. Kuzel, and F. Kadlec, “Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods,” Opt. Ex- press 22, 30492–30503 (2014).
[23] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters 58, 2486–2489 (1987).
[24] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters 58, 2059–2062 (1987).
[25] K. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Physical Review Letters 65, 3152 (1990).
[26] E. Yablonovitch, T. Gmitter, and K. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Physical review letters 67, 2295 (1991).
[27] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (2008).
[28] M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120 sharply bent single-line-defect photonic crystal waveguide,” Applied physics letters 76, 952–954 (2000).
[29] Y. X. Fan, T. Q. Sang, T. Liu, L. L. Xu, and Z. Y. Tao, “Single-mode interface states in heterostructure waveguides with bragg and non-bragg gaps,” Scientific Reports 7 (2017).
[30] S. G. Lee, C. S. Kee, E. S. Lee, and T. I. Jeon, “Photonic band anti-crossing in a coupled system of a teraherz plasmonic crystal film and a metal air-gap waveguide,” Journal of Applied Physics 110, 033102 (2011).
[31] P. Markos, “Fano resonances and band structure of two-dimensional photonic struc- tures,” Physical Review A 92, 043814 (2015).
[32] B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Optics letters 37, 3756–3758 (2012).
[33] K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semi- conductor nanowires and nanowire arrays: Relating leaky waveguide modes to bloch photonic crystal modes,” Journal of Applied Physics 116, 153106 (2014).
[34] D. R. Abujetas, R. Paniagua-Dominguez, and J. Sanchez-Gil, “Unraveling the janus role of mie resonances and leaky guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2, 921–929 (2015).
[35] T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics letters 22, 961–963 (1997).
[36] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[37] A. Purvis, H. Toriz-Garcia, J. Cowling, G. Williams, L. Seed, R. McWilliam, F. Soulard, and P. Ivey, “Holographic lithography,” in “Digital Holography and Three-Dimensional Imaging,” (Optical Society of America, 2014), pp. DW1B–1.
[38] M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Advanced Materials 19, 207–210 (2007).
[39] M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Advanced Materials 21, 4680–4682 (2009).
[40] S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Optics letters 22, 132–134 (1997).
[41] V. C. Venugopal, “Three-dimensional periodic chiral sculptured thin films,” Journal of Nanophotonics 7, 073502–073502 (2013).
[42] B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon et al.,“Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[43] P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast nonlinear response of gold gyroid three-dimensional metamaterials,” Physical Review Applied 2, 044002 (2014).
[44] J. W. S. Rayleigh, “On the remarkable phenomenon of crystalline re?exion described by prof. stokes,” Philosophical Magazine 26, 256–265 (1888).
[45] J. C. W. Lee and C. Chan, “Polarization gaps in spiral photonic crystals,” Opt. Express 13, 8083–8088 (2005).
[46] J. Hung, “Optical activities of micro-spiral photonic crystals fabricated by multi- beam holographic lithography,” Journal of Optics 13, 119501 (2011).
[47] H. K. Bisoyi and Q. Li, “Light-directing chiral liquid crystal nanostructures: From 1d to 3d,” Accounts of Chemical Research 47, 3184–3195 (2014). PMID: 25181560.
[48] I. Abdulhalim, R. Weil, and L. Benguigui, “Dispersion and attenuation of the eigenwaves for light propagation in heiicoidal liquid crystals,” Liquid Crystals 1, 155–167 (1986).
[49] Y. Ye and S. He, “polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Applied Physics Letters 96, 203501 (2010).
[50] Y. R. Li and Y. C. Hung, “Dispersion-free broadband optical polarization rotation based on helix photonic metamaterials,” Optics Express 23, 16772–16781 (2015).
[51] Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Optical Engineering 39, 1863–1868 (2000).
[52] Z. Y. Xie, L. G. Sun, G. Z. Han, and Z. Z. Gu, “Optical switching of a birefringent photonic crystal,” Advanced Materials 20, 3601–3604 (2008).
[53] S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3d extended self-assembled gold metamaterials with enhanced light transmission,” Advanced Materials 25, 2713–2716 (2013).
[54] S. S. Oh, A. Demetriadou, S. Wuestner, and O. Hess, “On the origin of chirality in nanoplasmonic gyroid metamaterials,” Advanced Materials 25, 612–617 (2013).
[55] H. Y. Hsueh, H. Y. Chen, Y. C. Hung, Y. C. Ling, S. Gwo, and R. M. Ho, “Well defined multibranched gold with surface plasmon resonance in near-infrared region from seeding growth approach using gyroid block copolymer template,” Advanced Materials 25, 1780–1786 (2013).
[56] Y. R. Li, R. M. Ho, and Y. C. Hung, “Plasmon hybridization and dipolar interaction on the resonances of helix metamaterials,” IEEE Photonics Journal 5, 2700510–2700510 (2013).
[57] K. Song, M. Wang, Z. Su, C. Ding, Y. Liu, C. Luo, X. Zhao, K. Bhattarai, and J. Zhou, “Low-loss broadband negative refractive index due to nonresonant 2d helical chiral metamaterial,” arXiv preprint arXiv:1705.02676 (2017).
[58] J. Noh, S. Huang, D. Leykam, Y. Chong, K. Chen, and M. C. Rechtsman, “Experimental observation of optical weyl points,” arXiv preprint arXiv:1610.01033 (2016).
[59] D. C. Hooper, A. G. Mark, C. Kuppe, J. T. Collins, P. Fischer, and V. K. Valev, “Strong rotational anisotropies affect nonlinear chiral metamaterials,” Advanced Materials 29 (2017).
[60] A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photonics spectra 40, 72 (2006).
[61] J. Serbin, A. Egbert, A. Ostendorf, B. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fr‥ohlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics,” Optics letters 28, 301–303 (2003).
[62] E. Dedman, D. Sharp, A. Turberfield, C. Blanford, and R. Denning, “Photonic crystals with a chiral basis by holographic lithography,” Photonics and Nanostructures Fundamentals and applications 3, 79–83 (2005).
[63] X. Wang, W. Gao, J. Hung, and W. Y. Tam, “Optical activities of large-area su8 microspirals fabricated by multibeam holographic lithography,” Applied optics 53, 2425–2430 (2014).
[64] K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996).
[65] J. A. Sherwin and A. Lakhtakia, “Ellipsoid-based model of structure-response relationships for chiral sculptured thin films,” in “International Symposium on Optical Science and Technology,” (International Society for Optics and Photonics, 2000), pp. 250–253.
[66] A. Lakhtakia, “Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik-International Journal for Light and Electron Optics 112, 145–148 (2001).
[67] V. C. Venugopal and A. Lakhtakia, “Electromagnetic plane wave response characteristics of non–axially excited slabs of dielectric thin film helicoidal bianisotropic mediums,” in “Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,” , vol. 456 (The Royal Society, 2000), vol. 456, pp. 125–161.
[68] K. Robbie, J. Sit, and M. Brett, “Advanced techniques for glancing angle deposition,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 16, 1115–1122 (1998).
[69] T. G. Mackay and W. S. Weiglhofer, “Homogenization of biaxial composite materials: dissipative anisotropic properties,” Journal of Optics A: Pure and Applied Optics 2, 426 (2000).
[70] L. Novotny, “Strong coupling, energy splitting, and level crossings: A classical per-spective,” American Journal of Physics 78, 1199–1202 (2010).
[71] N. Kaina, M. Fink, and G. Lerosey, “Composite media mixing bragg and local resonances for highly attenuating and broad bandgaps,” Scientific reports 3, 3240 (2013).
[72] K. P. Huy, J. C. Beugnot, J. C. Tchahame, and T. Sylvestre, “Strong coupling between phonons and optical beating in backward brillouin scattering,” Physical Review A 94, 043847 (2016).
[73] K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation 14, 302–307 (1966).
[74] Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/.
[75] R-soft BandSOLVE, Inc.: http://www.cybernet-ap.com.tw/zh.php?m=744&t=71.
[76] C. Kittel, Introduction to Solid State physics (John Wiley & Sons, Inc., 2005).
|