帳號:guest(3.145.55.100)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何軒宇
作者(外文):Ho, Hsuan-Yu
論文名稱(中文):熱退火對離子束濺鍍之奈米多層膜室溫與低溫機械損耗研究
論文名稱(外文):Annealing effect on the room temperature and cryogenic mechanical loss of ion beam sputtered nano-layer coatings
指導教授(中文):趙煦
指導教授(外文):Chao, Shiuh
口試委員(中文):李正中
陳至信
口試委員(外文):Lee, Cheng-Chung
Chen, Jyh-Shin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:104066534
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:68
中文關鍵詞:離子束濺鍍低溫機械損耗奈米多層膜熱退火
外文關鍵詞:IBScryogenic mechanical lossnano-layerthermal annealing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:46
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
雷射干涉重力波偵測站(Laser Interferometer Gravitational Wave Observatory, LIGO)以大型麥克森干涉儀進行重力波偵測,由於遙遠的距離當重力波傳遞到地球時訊號十分地微弱,因此應盡可能降低雜訊以提高系統偵測的靈敏度。目前大型麥克森干涉儀總體雜訊最低處大約落在100Hz,而在此頻率的主要雜訊來源為Coating Brownian noise。Coating Brownian noise是來自高反射鏡薄膜內部的熱擾動,根據Fluctuation-dissipation theorem薄膜熱擾動雜訊與機械損耗成正比,故實驗中量測薄膜機械損耗並以退火方式降低機械損耗,尋找熱擾動雜訊較低的光學薄膜。
本論文第一部分研究由TiO2/SiO2堆疊的奈米多層膜室溫機械損耗,根據文獻此結構等效為高反射鏡中的高折射係數層,並且奈米多層膜層數愈多其單層TiO2厚度愈薄、薄膜結晶溫度越高。因此選擇以IBS鍍製設計結構中結晶溫度最高的19層奈米多層膜,並量測其室溫機械損耗與退火275oC的室溫機械損耗。此19層奈米多層膜退火275oC後大約在100Hz的機械損耗從1.16×10-3降低至1.28×10-4,顯示退火能有效降低19層奈米多層膜的機械損耗。
第二部份中以降低溫度方式減少熱擾動雜訊,在低溫環境下進行機械損耗量測,研究19層奈米多層膜低溫機械損耗趨勢。結果中19層奈米多層膜約在80K處的機械損耗較計算的機械損耗理論值低,顯示透過薄膜厚度減薄能夠抑制SiO2薄膜的機械損耗峰。19層奈米多層膜的低溫機械損耗亦可透過退火降低,677Hz的20K機械損耗從4.24×10-4降低至2.69×10-4,具有作為低損耗反射鏡材料的研究價值。
The Laser Interferometer Gravitational Wave Observatory (LIGO) detect gravitational waves with large and precise Michelson interferometers. The gravitational wave signals from faraway stars are extremely weak so that it's necessary to reduce noise of the interferometer. The most sensitive observed frequency range of the interferometer is around 100Hz, and the sensitivity is majorly limited by coating Brownian noise of high reflective mirrors. According to the fluctuation-dissipation theorem, coating Brownian noise is proportional to mechanical loss of coating materials. Thus, the mechanical loss of coating materials is measured to evaluate coating Brownian noise, and it will be reduced by annealing.
The first part of this thesis shows that the mechanical loss investigation of nano-layer structure consisting of alternating thin TiO2 and SiO2 films at room temperature. Several prototypes are designed, featuring a different number of TiO2/SiO2 layer pairs, and different thicknesses, but the same nominal refractive index. In several prototypes, the 19-layer structure is composed of thinnest TiO2/SiO2 layer, and exhibits highest threshold temperatures for crystallization onset. Therefore, the 19-layer is deposited by ion beam sputter and is annealed at 275oC for 24 hours. After annealing, the mechanical loss of the 19-layer at room temperature is effectively reduced from 1.16×10-3 to 1.28×10-4 around 100Hz.
In the other part, coating Brownian noise is reduced in cryogenic. Cryogenic loss of the 19-layer structure is also investigated. In the results, measured losses are lower than the calculated loss from the individual TiO2/SiO2 layer. The cryogenic peak of SiO2 seems to be “covered out”, and the loss of the 19-layer is very close to that of the TiO2. After annealing, the cryogenic mechanical loss of the 19-layer is also reduced from 4.24×10-4 to 2.69×10-4 around 677Hz at 20 K. These result shows that annealing decreases mechanical loss of the 19-layer both at room temperature and cryogenic.
目錄
Abstract I
摘要 II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章、導論 1
1.1 前言 1
1.2 研究動機 3
第二章、薄膜鍍製流程及薄膜特性分析 6
2.1 奈米多層膜介紹與薄膜鍍製流程 6
2.1-1 奈米多層膜簡介 6
2.1-2 矽懸臂製作流程與共振模態 7
2.1-3 薄膜鍍製簡介 9
2.1-4 19層奈米多層薄膜退火流程與結晶分析 10
2.1-5 19層奈米多層膜厚度量測 11
2.2 單層二氧化鈦及二氧化矽薄膜成份量測與應力量測 13
2.2-1 單層二氧化鈦及二氧化矽薄膜成份量測 13
2.2-2 單層二氧化鈦及二氧化矽薄膜應力量測 14
第三章、奈米多層膜之室溫機械損耗與退火影響 16
3.1 機械損耗理論 16
3.2 室溫機械損耗量測系統介紹 20
3.3 矽懸臂基板之室溫機械損耗 22
3.3-1 二氧化鈦薄膜之室溫機械損耗 24
3.3-2 二氧化矽薄膜之室溫機械損耗 26
3.4 奈米多層膜之室溫機械損耗 28
3.4-1 19層奈米多層膜之室溫機械損耗量測結果 28
3.4-2 19層奈米多層膜之機械損耗量測值與以單層薄膜機械損耗計算之理論值 30
3.4-3 退火275oC的19層奈米多層膜室溫機械損耗 33
第四章、奈米多層膜之低溫機械損耗與退火影響 35
4.1 低溫量測系統介紹 35
4.2 低溫量測流程 37
4.3 夾持影響分析與低溫矽懸臂基板機械損耗量測結果 39
4.4 單層薄膜之低溫機械損耗 41
4.4-1 二氧化鈦薄膜之低溫機械損耗 41
4.4-2 二氧化矽薄膜之低溫機械損耗 43
4.4-3 退火600oC二氧化矽薄膜之低溫機械損耗 45
4.4-4 氧化物低溫機械損耗峰分析 47
4.5 奈米多層膜之低溫機械損耗 50
4.5-1 未退火19層奈米多層膜之低溫機械損耗 50
4.5-2 單層薄膜低溫機械損耗量計算之19層奈米多層膜低溫機械損耗理論值 52
4.5-3 退火275oC 19層奈米多層膜之低溫機械損耗 54
第五章、結論與未來展望 57
5.1 結論 57
5.2 未來展望 58
附錄 59
附錄A、舊夾持方式二氧化矽之低溫機械損耗 59
附錄B、低溫機械損耗峰值分析 59
附錄C、19-layer TEM量測各層厚度 61
附錄D、各種矽懸臂試片之室溫機械損耗統整表格 62
參考文獻 65
[1] H. B. Callen et. al., Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. Vol.116, 061102 (2016)
[2] LIGO Scientific Collaboration Group, Instrument science white paper, LIGO document: LIGO-T1600119–v4
[3] H. B. Callen et. al., Irreversibility and generalized noise, Physical Review, Vol.83, 34-40 (1951)
[4] R. F. Greene et al, On the formalism of thermodynamic fluctuation theory, Phys. Rev., Vol.83, 1231-1235 (1951)
[5] H. B. Callen et. al., On a theorem of irreversible thermodynamics, Phy. Rev., Vol.86, 702-710 (1952)
[6] I. W. Martin et. al., Research towards silicon suspensions and optics in future detectors, LIGO document: LIGO-G1100973-v2
[7] Harry G et. al., Optical Coatings and Thermal Noise in Precision Measurement. Cambridge, New York, Cambridge University Press, 150 (2012)
[8] I. W. Martin, Studies of materials for use in future interferometric gravitational wave detectors, PhD thesis, University of Glasgow (2009)
[9] P.G. Murray et al., Ion-beam sputtered amorphous silicon films for cryogenic precision measurement systems, Phys. Rev. Vol.92, 062001 (2015)
[10] S. Chao et. al., Characteristics of ion-beam-sputtered high refractive-index TiO2-SiO2 mixed films, J. Opt. Soc. Am. A Vol.16, 1477 (1999)
[11] N.S. Gluck et. al., Microstructure and composition of composite SiO2/TiO2 thin films, J. Appl. Phys. Vol.69, 3037 (1991)
[12] R. P. Netterfield et. al., Investigation of ion beam sputtered Silica Titania mixtures for use in GW interferometer optics, OIC Thd2 (2007)
[13] I.M. Pinto et. al., Nanometer – layered SiO2:TiO2 mixtures for high reflectance/low noise coatings status update, LIGO document: LIGO-G1300321-v1
[14]A. J. Haija et. al., Effective characteristic matrix of ultrathin multilayer structure, Opt. App. XXXVI (2006)
[15]王薇雅, 應用於雷射干涉重力波偵測器開發工作之單晶矽懸臂樑之機械震動性質研究, 國立清華大學碩士論文 (2013)
[16] S. Reid et al., Mechanical dissipation in silicon flexures, Physics Letters A Vol.351, 205 (2006)
[17]李家暐, 探討應用於雷射干涉重力波偵測器之以電漿輔助化學氣相沈積法製備於矽懸臂之氮化矽薄膜之材料特性與機械損耗, 國立清華大學碩士論文 (2013)
[18] Wei D. T., Ion beam interference coating for ultralow optical loss, Apply Opt, Vol.28, 2813-2816 (1989)
[19] L. Pinard, Advanced LIGO test masses coatings a LIGO and CHALLENGING story final results, LVC meeting, Pasadena, CA, USA, March, LIGO-G1500296-v2
[20]王文祥, 具低損耗之光學混合膜及雷射反射鏡的研究, 國立清華大學博士論文 (1999)
[21]王順錦, 應用於雷射干涉重力波偵測器之以離子束濺鍍法製作之奈米膜層結構高反射鏡及其結晶條件之探討, 國立清華大學碩士論文 (2013)
[22] S. Chao et. al., Thickness-dependent crystallization on thermal anneal for titania/silica nm-layer composites deposited by ion beam sputter method, Opt. Exp. Vol.22, 29847-29854 (2014)
[23]莊友杭, 以電漿輔助化學氣相沈積法於矽懸臂沈積之氮化矽薄膜應力對機械損耗之影響暨機械損耗量測系統改善, 國立清華大學碩士論文 (2014)
[24] C. Bundesmann et. al., Stress relaxation and optical characterization of TiO2 and SiO2 films grown by dualion beam deposition, Thin Solid Films Vol.516, 8604–8608 (2008)
[25] S. T. Thornton et. al., Classical dynamics of particles and systems, Brooks Cole, fifth edition, 109-121(2003)
[26] K. Y. Yasumura et. al., Quality Factors in Micron- and Submicron-Thick Cantilevers, journal of microelectromechanical systems, vol.9 (2000)
[27] D. R. M. Crooks, Mechanical loss and its significance in test mass mirrors of gravitational wave detectors, Ph.D. thesis, University of Glasgow (2002)
[28] H. C. Tsai et. al., Determining the Poisson's ratio of thin film materials using resonant method. Sensors and Actuators A, Vol.103, 377-383 (2003)
[29] Matthew A. Hopcroft et. al., What is the Young’s Modulus of Silicon?, Journal of microelectromechanical systems, VOL.19, 229-238 (2010)
[30] R. M. Jones, Mechanics of composite materials, Philadelphia: Taylor & Francis ch3.2 (1999)
[31]歐政勳, 室溫下量測機械損耗之系統設置與量測熔融石英玻璃懸臂及單晶矽懸臂之初步量測分析, 國立清華大學碩士論文 (2012)
[32]吳孟筠, 利用電漿輔助化學氣相沉積法鍍製四分之一波長厚度SiN0.40/SiO2堆疊之室溫機械損耗, 國立清華大學碩士論文 (2017)
[33] S. Reid et al., Mechanical dissipation in silicon flexures, Physics Letters A Vol.351, 205 (2006)
[34] R. G. Christian, The theory of oscillating-vane vacuum gauges, Vacuum Vol.16, 175 (1966)
[35]鄭鈞, 低溫機械損耗量測系統之設置與熱退火對奈米多層膜機械損耗之研究, 國立清華大學碩士論文 (2015)
[36]黃書于, 雙面鍍製於矽懸臂之高應力氮化矽薄膜之應力與機械損耗研究, 國立清華大學碩士論文 (2015)
[37] D. F. McGuigan et al., Measurements of the mechanical Q of single- crystal silicon at low temperature, Journal of Low Temperature Physics Vol.30, 621-629 (1978)
[38] G. Saggo, Cryogenic Q-measurement on silicon, presentation at Friedrich Schiller University Jena (2006)
[39] S. M. Sze, The Physics of Semiconductor Devices, Wiley, New York, 12-20 (1969)
[40] 吳漢, 以電漿輔助化學氣相沉積法沉積氮化矽薄膜及其與二氧化矽之堆疊膜之低溫機械損耗, 國立清華大學碩士論文 (2017)
[41] S. Chao et al., Errors on the Cryogenic Mechanical Loss Measurement in Cantilever Ring-down Method, LIGO document:G1700301
[42] Raffaele Flaminio and KAGRA collaboration, The cryogenic challenge: status of the KAGRA project, J. Phys. Conf. Ser. Vol.716, 012034 (2016)
[43] F Acernese et. al., The Advanced Virgo detector, J. Phys. Conf. Ser. Vol.610, 012014 (2015)
[44] R. Robie et al., Brief update of crygoenic coating mechanical loss measurements at the University of Glasgow, LIGO document:LIGO-G1601854
[45] C. R. Billman et al., Origin of the second peak in the mechanical loss function of amorphous silica, Phys. Rev. B Vol.95, 014109 (2017)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *