帳號:guest(3.15.18.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃昱仁
作者(外文):Huang, Yu-Ren
論文名稱(中文):以濕式化學生長氧化鋁於背表面製作具局部接觸鈍化結構之多晶矽太陽能電池之研究
論文名稱(外文):Growing Aluminum Oxide On Rear Surface by Wet Chemical Deposition Method in the study of the Multicrystalline Silicon Solar Cell with Local Rear Contact
指導教授(中文):王立康
指導教授(外文):Wang, Li-Karn
口試委員(中文):陳昇輝
余沛慈
口試委員(外文):Chen, Sheng-Hui
Yu, Peichen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:104066533
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:64
中文關鍵詞:氧化鋁鈍化濕式化學法多晶矽太陽能電池氫氧化鋁陽離子交換樹脂
外文關鍵詞:aluminum oxidepassivationwet chemical methodmulticrystalline silicon solar cellaluminum hydroxidecation exchange resin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:79
  • 評分評分:*****
  • 下載下載:27
  • 收藏收藏:0
本實驗以濕式製程化學鈍化方式取代真空製程的原子層沉積ALD方式。本實驗分兩部分化學溶液,第一部分以高純度氫氧化鋁和45%氫氧化鈉水溶液混合後進行攪拌使氫氧化鋁溶解飽和後,形成含有四羥基合鋁酸根(AlO4-)和鈉離子(Na+)水溶液。為了避免金屬鈉離子汙染晶片,使用陽離子交換樹脂將鈉離子轉換成氫離子於溶液中以去除鈉離子。此結果與不使用陽離子交換樹脂來比較差異。在實驗中,是用滴管滴於平躺晶片背表面上進行塗佈均勻,在不同退火溫度下量測少子壽命提升的探討,並嘗試不同退火時間評估晶片性能,為了確定氧化層的存在,我們透過XPS去觀察。
第二部分以高純度氫氧化鋁和濃鹽酸混合成的水溶液,以滴管滴於雙面裸晶矽片,塗佈方式是使表面沾上鋁離子和氯離子。矽片表面的氯離子和水受加溫後變為氯氣而跑出大氣中,留下鋁離子再進行退火使鋁離子和氧根重新鍵結而產生氧化鋁,我們透過XPS去觀察氧-鋁元素。
本實驗後段電極元件製作的部分用網印方式印刷背面局部接觸電極,以在背部形成背表面場。我們用SEM觀察背部表面場的厚度,最後以不同燒結時間分析對矽晶太陽能電池性能的影響。
In this study,we seek a wet chemical method for depositing aluminum oxide on rear side of multicrystalline silicon solar cells. First,we dissolved aluminum hydroxide in an alkaline solution to form AlO4- ions and alkaline ions. Then the alkaline ion were removed by cation exchange resin,we then smeared the silicon wafers with such a solution,followed by an annealing process. Minority carrier lifetime was compared between the wafers sweared by solutions with and without alkaline ions removed.
In the second part of this study,we used hydrochloric acid to dissolve aluminum
hydroxide and smeared the multicrystalline silicon wafers with such a solution. The solution first contained aluminum ions and chlorine ions on the wafer,and became a film of aluminum oxide through an annealing process. The minority carrier lifetime was measured to find an optimal annealing temperature.

第一章 序論................................................1
1.1前言 ................................................1
1.2文獻回顧................................................1
第二章基本原理..............................................3
2.1半導體基礎物理...........................................3
2.1-1半導體材料與結構.......................................3
2.1-2固態量子力學導論.......................................4
2.1-3半導體的能帶理論與結構[10]..............................6
2.1-4光吸收、能態密度與載子分布..............................7
2.2太陽能電池基本原理........................................9
2.2-1太陽光譜...............................................9
2.2-2太陽能電池工作原理.....................................10
2.2-2生命期與表面復合效應[15]...............................13
2.2-3載子復合機制..........................................17
2.2-4太陽能電池照光特性[10].................................18
2.2-5太陽能電池參數介紹.....................................19
2.3量子效率................................................23
2.3-1外部量子效率(external quantum efficient,EQE)...........23
2.3-2內部量子效率(internal quantum efficient,IQE)...........24
2.4背表面場效應.............................................24
2.5濕式化學生長氧化鋁機制....................................25
第三章研究方法與製程步驟.....................................27
3.1實驗概述.................................................27
3.2實驗目的.................................................27
3.2-1 氫氧化鋁與氫氧化鈉混合.................................27
3.2-2 氫氧化鋁與鹽酸混合.....................................28
3.3元件製作流程..............................................29
3.4前置步驟..................................................30
3.5量測方式..................................................36
第四章 實驗數據與分析.........................................41
4.1少數載子生命週期量測.......................................41
4.1-1第一組溶液氫氧化鈉與氫氧化鋁使用陽離子交換樹脂.............42
4.1-2第二組溶液鹽酸與氫氧化鋁混和塗佈..........................49
4.2太陽能電池元件............................................54
4.2-1 SEM量測...............................................54
4.2-2 BSF觀測...............................................54
4.2-3元件I-V量測 .........................................57
第五章結論...................................................59
參考文獻 .................................................61
[1] R.S.Oh1, “Light-Sensitive Electric Device”, U.S. Patent, vol. 2, p. 402-602, 1941.
[2] D. M. Chapin, C. S. Fuller, and G. L. Pearson “A new silicon p-n junction
photocell for converting solar radiation into electrical power.” Journal of Applied Physics ,vol,25,p. 676-677 ,1954
[3] 林明憲,太陽電池技術入門,初版,全華圖書,民國九十六年。
[4] William Shockley and Hans J. Queisser ,“ Detailed balance limit of efficiency of p-n junction solar cells.”, Journal of Applied Physics 32, 510 ,1961
[5] https://www.nrel.gov/pv/assets/images/efficiency-chart.png
[6] Thomomas N.D.Tibbits,paul Beutel, Matthias Grave,etc,“New efficiency frontiers with wafer-bonded multi-junction solar cells,” Proceedings of the 29th European Photovoltaic Solar Energy Conference. 2014. Amsterdam, Netherlands. p. 1975-1978.
[7] Jianhua Zhao,Aihua Wang and Martin A.Green,“High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates,” Solar energy materials and solar,vol.65,no.1,p. 429-435,2001.
[8] Nordine Sahouane, Abdellatif Zerga “ Optimization of antireflection multilayer for industrial crystalline silicon solar cells,” Energy Pro.44 ,118 – 125,2014.
[9] Ben G.Streetman,Solid State Electonic Device,6rd ed,Prentice Hall Press,2006.
[10] 翁敏航,楊茹媛,館鴻,晁成虎,太陽能電池-原理,元件,材料,製程及檢測技術, 東華書局
[11] https://baike.baidu.com/pic/%E7%9B%B4%E6%8E%A5%E5%B8%A6%E9%9A%99%E5%8D%8A%E5%AF%BC%E4%BD%93/8942933/0/7a899e510fb30f248f6bcbcfc095d143ac4b030c?fr=lemma&ct=single.
[12] https://read01.com/QjM0KJ.html#.WaFcRD4jGUk.
[13] https://www.materialsnet.com.tw/DocView.aspx?id=7004
[14] http://chem.cersp.com/HXJS/UploadFiles_6882/200601/20060103174939330.jpg
[15] BettyLise Anderson ,Richard L.Anderson:Fundamentals of Semiconductor Devices,McGraw-Hill College Press,2005.
[16] http://www.ni.com/white-paper/7230/en/
[17] K. Bouzidi, M. Chegaar, “Solar cells parameters evaluation considering the series and shunt resistance,” Solar Energy Materials & Solar Cells 91,2007.
[18] Shreesh Narasimha, Ajeet Rohatgi, “ An optimized rapid aluminum back surface field technique for silicon solar cells,” IEEE transactions on electron devices,vol.46,NO.7,july1999.
[19] B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels,“On the c -Si surface passivation mechanism by the negative-charge-dielectric Al2O 3, ” Journal Of Applied Physics, vol.104, 2008.
[20] Adriane D.V. Souza, Cezar C. Arruda, Leandro Fernandes, Maria L.P. Antunes Pedro K. Kiyohara, Rafael Salomão,“Characterization of aluminum hydroxide (Al(OH)3) for use as a porogenic agent in castable ceramics,” Journal of the European Ceramic Society 35 ,803–812,2015.
[21] Ruiping Liu , Jiawei Ju , Ziliang He , Chengzhi Hu , Huijuan Liu, Jiuhui Qu, “Utilization of annealed aluminum hydroxide waste with incorporated fluoride for adsorptive removal of heavy metals,” Physicochem. Eng. Aspects 504 ,2016.
[22] Daniel Kray, Sybille Hopman, Akos Spiegel,Bernold Richerzhagen,Gerhard P. Willeke,“Study on the edge isolation of industrial silicon solar cells with waterjet-guided laser,” Solar Energy Materials & Solar Cells 91 ,2007.

[23] Daniel N. Wright, Erik S. Marstein and Awe Holt,“Double layer anti-reflective coatings for silicon solar cells,” IEEE. Section for Renewable Energy, Institute for Energy Technology, P.O. Box 40 Kjeller, NO-2027,2005.
[24] Yun-Shao,Chia-Hsun Hsu,Shui-Yang Lien,Dong-Sing Wuu and In-Cha Hsieh, “Effect of hydrogen content in intrinsic a-Si:H on performances of heterojunction solar cells,” International Journal Photoenergy,vol.2013,2013.
[25] http://www.twword.com/wiki/%E6%B0%AB%E6%B0%A7%E5%8C%96%E9%8B%81
[26] J. Müller, K. Both, S. Gatz, H. Plagwitz, G. Schubert and R. Brendel, “Contact formation and recombination at screen-printed local aluminum-alloy silicon solar cell base contacts ,” IEEE Transactions on Electron Device, pp. 3239-3245,2011.
[27] http://www.solarrd.com/WCT-120.html.
[28] Henning Nagel, Christopher Berge, and Armin G. Aberle ,“Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors,” Journal of Applied Physics 86, 6218 ,1999.
[29] https://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Spectroscopy/Vibrational_Spectroscopy/Infrared_Spectroscopy/How_an_FTIR_Spectrometer_Operates.
[30] Taeyoung Kwon,Sungchul Kim,Dohyeon Kyung,Woowon Jung,Sunyong Kim,Yongwoo Lee,Youngkuk Kim,Kyungsoo Jang,Sungwook Jung,Myungchul Shin,Junsin Yi,“The effect of firing temperature profiles for the high efficiency of crystalline Si solar cells” Solar Energy Materials & Solar Cells,vol,94,pp.823–829, 2010.

[31] B. Vermang,H. Goverde,A. Uruena,A. Lorenz,E. Cornagliotti,A. Rothschild,J. John,J. Poortmans,R. Mertens, “Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si solar cells,” Solar Energy Materials & Solar Cells,vol.101, pp204-209,2012.
[32] 曹天相 , “背面具有鈍化層與局部接觸結構之創新型矽晶太陽能電池製作:初步研究, ” 國立清華大學光電工程研究所, 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *