帳號:guest(3.149.234.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝 忻
作者(外文):Hsieh, Hsin
論文名稱(中文):兩芯多防區之麥克森干涉儀光纖入侵感測系統
論文名稱(外文):Multi-Defense-Zone Michelson-Interferometer Fiber Intrusion Detection System with Two-Core Fiber Cable
指導教授(中文):王立康
指導教授(外文):Wang, Li-Karn
口試委員(中文):劉文豐
馮開明
口試委員(外文):Liu, Wen-Fung
Feng, Kai-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:104066529
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:68
中文關鍵詞:光纖感測光纖雷射麥克森干涉儀入侵偵測
外文關鍵詞:fiber sensorfiber laserMichelson-Interferometerintrusion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:70
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文利用光纖麥克森干涉儀為基礎設計一入侵感測系統,並於干涉儀內架設一線型雷射共振腔,再利用多個DWDM設定波長藉此對應不同之防區,經由入侵引起之相位變化造成干涉,即可偵測入侵訊號。本文使用了四個波長做為四防區,並於戶外測試了光纜貼地、光纜埋地、光纜放置於鐵網及鐵窗等環境下之入侵狀況,利用程式分析各種入侵訊號後判別出不同環境下對應之閾值,再統一測試系統之報警狀況,並同時監控防區間之干擾狀況,以達到最佳之系統判斷。
Fiber laser cavities with Michelson interferometers being used as end reflectors were employed to produce laser power fluctuation when the Michelson interferometers were perturbed. In this research, we built such fiber laser cavities and applied them to intrusion detection for multiple perimeter zone security. Two single-mode fibers were used to implement such a fiber laser cavity with a DWDM bandpass filter to define the perimeter zone. When there is anyone invading the defense zone, the phase of the Michelson interferometer will change and then we can receive the intrusion signal fedback from the corresponding laser cavity. In this thesis, we use four wavelengths for four defense zones and we test our system in four environments including cable on the ground, cable buried in the ground, cable on the iron net, and cable on the window. In order to make the best judgement in determining intrusion, we analyze different intrusion-induced signals, determine threshold by program, simultaneously test the false alarm rate for all the defense-zones, and detect interference between different defense zones.
第一章 序論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 文獻回顧 2
1.3.1 光纖布拉格光柵感測器(Fiber Bragg grating sensor, FBG) 2
1.3.2 混合式干涉儀 2
1.3.3 光時域反射儀(Optical time domain reflectometer, OTDR) 3
1.3.4 以干涉儀進行Q-調制之系統 4
1.4 論文架構 5
第二章 原理與介紹 6
2.1 光纖(Optical fiber) 6
2.2 光纖耦合器(Fiber coupler) 7
2.3 光纖環形反射鏡(Fiber loop mirror)[35] 8
2.4 光纖雷射共振腔 9
2.5 麥克森干涉儀(Michelson interferometer) 10
2.6 入侵判斷 12
2.6.1 電壓閾值(Voltage threshold) 12
2.6.2 頻率比例閾值(Frequency ratio threshold) 12
第三章 實驗架構 14
3.1 雷射光源與各防區波長 16
3.2 摻鉺光纖長度選用 17
3.3 主要實驗元件及系統簡述 19
3.4 入侵方式介紹 20
3.4.1 第一防區 20
3.4.2 第二防區 20
3.4.3 第三防區 21
3.4.4 第四防區 22
第四章 實驗結果與分析 23
4.1 光源分析 23
4.2 戶外測試 25
4.2.1 第一防區之訊號偵測及閾值選定(貼地光纜) 25
4.2.2 第二防區之訊號偵測及閾值選定(埋地光纜) 30
4.2.3 第三防區之訊號偵測及閾值選定(鐵網上之光纜) 36
4.2.4 第四防區之訊號偵測及閾值選定(鐵網及鐵窗上之光纜) 40
4.2.5 訊號強度影響閾值判定測試 47
4.2.6 防區間相互干擾及入侵結果 56
第五章 結論 61
參考文獻 63
[1] Gloge, D. (1977). Optical fiber theory: Opportunities for advancement abound. Radio Science, 12(4), 479-490.

[2] Okoshi, T. (1987). Recent advances in coherent optical fiber communication systems. Journal of lightwave technology, 5(1), 44-52.

[3] Saravanos, C., & Lowe, R. S. (1988, August). Characterization techniques of single-mode fibers. In Antenna Technology and Applied Electromagnetics, 1988. ANTEM 1988. Symposium on(pp. 1-6). IEEE.

[4] Patrick, H. J., Williams, G. M., Kersey, A. D., Pedrazzani, J. R., & Vengsarkar, A. M. (1996). Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photonics Technology Letters, 8(9), 1223-1225.

[5] Park, S. J., Ta, C. L., Baek, H. G., Kim, Y. H., Eom, J. B., Lee, Y. T., & Lee, B. H. (2013, June). Optical fiber sensor for refractive index measurement based on localized surface plasmon resonance. In Conference on Lasers and Electro-Optics/Pacific Rim (p. WPF_20). Optical Society of America.

[6] Mahmud, Z., Herman, S. H., Noor, U. M., & Saharudin, S. (2013, December). Performance characterization of optical fiber oxygen sensor in gas and aqueos phase. In Research and Development (SCOReD), 2013 IEEE Student Conference on (pp. 569-571). IEEE.

[7] Mao, P., Luo, Y., Chen, X., Fang, J., Huang, H., Chen, C., ... & Chen, Z. (2014, September). Design and optimization of multimode fiber sensor based on surface plasmon resonance. In Numerical Simulation of Optoelectronic Devices (NUSOD), 2014 14th International Conference on (pp. 119-120). IEEE.

[8] Villatoro, J., Minkovich, V. P., & Zubia, J. (2015). Photonic crystal fiber interferometric force sensor. IEEE Photonics Technology Letters, 27(11), 1181-1184.

[9] Rao, Y. J. (1997). In-fibre Bragg grating sensors. Measurement science and technology, 8(4), 355.

[10] Liu, W., Li, M., Wang, C., & Yao, J. (2011). Real-time interrogation of a linearly chirped fiber Bragg grating sensor based on chirped pulse compression with improved resolution and signal-to-noise ratio. Journal of Lightwave Technology, 29(9), 1239-1247.

[11] Zhao, L., & Huang, X. (2016, September). Integrated condition monitoring system of transmission lines based on fiber bragg grating sensor. In Condition Monitoring and Diagnosis (CMD), 2016 International Conference on (pp. 667-670). IEEE.

[12] Gold, M. P., & Hartog, A. H. (1983). Ultra-long-range OTDR in single-mode fibres at 1.3 μm. Electronics Letters, 19(13), 463-464.

[13] Zhu, F., Zhang, Y., Xia, L., Wu, X., & Zhang, X. (2015). Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array. Journal of Lightwave Technology, 33(23), 4775-4780.

[14] Aktas, M., Akgun, T., Demircin, M. U., & Buyukaydin, D. (2017, April). Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications. In Fiber Optic Sensors and Applications XIV (Vol. 10208, p. 102080G). International Society for Optics and Photonics.

[15] Tong, Y., Li, Z., Wang, J., & Zhang, C. (2017, May). Improved distributed optical fiber vibration sensor based on Mach-Zehnder-OTDR. In CLEO: Science and Innovations (pp. JW2A-16). Optical Society of America.

[16] Li, T., Wang, A., Murphy, K., & Claus, R. (1995). White-light scanning fiber Michelson interferometer for absolute position–distance measurement. Optics letters, 20(7), 785-787.

[17] Tian, Z., Yam, S. S., & Loock, H. P. (2008). Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. Optics letters, 33(10), 1105-1107.

[18] Yuan, L., Yang, J., & Liu, Z. (2008). A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer. IEEE sensors journal, 8(7), 1114-1117.

[19] Lu, P., Men, L., Sooley, K., & Chen, Q. (2009). Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature. Applied Physics Letters, 94(13), 131110.

[20] Lim, J. H., Jang, H. S., Lee, K. S., Kim, J. C., & Lee, B. H. (2004). Mach–Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings. Optics Letters, 29(4), 346-348.

[21] Blow, K. J., Doran, N. J., & Nayar, B. K. (1989). Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer. Optics letters, 14(14), 754-756.

[22] Dong, X., Tam, H. Y., & Shum, P. (2007). Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Applied Physics Letters, 90(15), 151113.

[23] Krakenes, K., & Blotekjaer, K. (1995). Comparison of fiber-optic Sagnac and Mach-Zehnder interferometers with respect to thermal processes in the fiber. Journal of lightwave technology, 13(4), 682-686.

[24] Kang, K. I., Chang, T. G., Glesk, I., & Prucnal, P. R. (1996). Comparison of Sagnac and Mach–Zehnder ultrafast all-optical interferometric switches based on a semiconductor resonant optical nonlinearity. Applied optics, 35(3), 417-426.

[25] Chtcherbakov, A. A., Swart, P. L., Spammer, S. J., & Lacquet, B. M. (1998, September). Modified Sagnac/Mach-Zehnder interferometer for distributed disturbance sensing. In Fourth Pacific Northwest Fiber Optic Sensor Workshop (Vol. 3489, pp. 60-65). International Society for Optics and Photonics.

[26] Hill, K. O., Fujii, Y., Johnson, D. C., & Kawasaki, B. S. (1978). Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Applied physics letters, 32(10), 647-649.

[27] Brady, D., Hill, K., & Basinger, S. (1993, November). Holographic pulse shaping in organic media. In Lasers and Electro-Optics Society Annual Meeting, 1993. LEOS'93 Conference Proceedings. IEEE (pp. 112-113). IEEE.

[28] Spammer, S. J., Swart, P. L., & Chtcherbakov, A. A. (1997). Merged Sagnac-Michelson interferometer for distributed disturbance detection. Journal of lightwave technology, 15(6), 972-976.

[29] Signorini, A., Faralli, S., Soto, M. A., Sacchi, G., Baronti, F., Barsacchi, R., ... & Di Pasquale, F. (2010, March). 40 km long-range Raman-based distributed temperature sensor with meter-scale spatial resolution. In Optical Fiber Communication Conference (p. OWL2). Optical Society of America.

[30] Zhang, S. M., Lu, F. Y., & Wang, J. (2007). All‐fiber actively Q‐switched Er3+/Yb3+ co‐doped ring laser. Microwave and Optical Technology Letters, 49(9), 2183-2186.

[31] Onstott, J. R., Messerly, M. J., Mikkelson, R. C., & Donalds, L. J. (1990). U.S. Patent No. 4,896,942. Washington, DC: U.S. Patent and Trademark Office.

[32] Hornung, S., Cassidy, S., Yennadhiou, P., & Reeve, M. (1986). The blown fiber cable. IEEE journal on selected areas in communications, 4(5), 679-685.

[33] Kawasaki, B. S., Hill, K. O., & Lamont, R. G. (1981). Biconical-taper single-mode fiber coupler. Optics Letters, 6(7), 327-328.

[34] Georgiou, G., & Boucouvalas, A. C. (1985). Low-loss single-mode optical couplers. IEE Proceedings J (Optoelectronics), 132(5), 297-302.

[35] Mortimore, D. B. (1988). Fiber loop reflectors. Journal of Lightwave Technology, 6(7), 1217-1224.

[36] Ball, G. A., & Glenn, W. H. (1992). Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors. Journal of Lightwave Technology, 10(10), 1338-1343.

[37] Zhang, M., Chen, L. L., Zhou, C., Cai, Y., Ren, L., & Zhang, Z. G. (2009). Mode-locked ytterbium-doped linear-cavity fiber laser operated at low repetition rate. Laser physics letters, 6(9), 657.

[38] Tamura, K., Ippen, E. P., Haus, H. A., & Nelson, L. E. (1993). 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Optics letters, 18(13), 1080-1082.

[39] Park, N., & Wysocki, P. F. (1996). 24-line multiwavelength operation of erbium-doped fiber-ring laser. IEEE Photonics Technology Letters, 8(11), 1459-1461.

[40] Kersey, A. D., Marrone, M. J., & Davis, M. A. (1991). Polarisation-insensitive fibre optic Michelson interferometer. Electronics letters, 27(6), 518-520.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *