|
[1] Gloge, D. (1977). Optical fiber theory: Opportunities for advancement abound. Radio Science, 12(4), 479-490.
[2] Okoshi, T. (1987). Recent advances in coherent optical fiber communication systems. Journal of lightwave technology, 5(1), 44-52.
[3] Saravanos, C., & Lowe, R. S. (1988, August). Characterization techniques of single-mode fibers. In Antenna Technology and Applied Electromagnetics, 1988. ANTEM 1988. Symposium on(pp. 1-6). IEEE.
[4] Patrick, H. J., Williams, G. M., Kersey, A. D., Pedrazzani, J. R., & Vengsarkar, A. M. (1996). Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photonics Technology Letters, 8(9), 1223-1225.
[5] Park, S. J., Ta, C. L., Baek, H. G., Kim, Y. H., Eom, J. B., Lee, Y. T., & Lee, B. H. (2013, June). Optical fiber sensor for refractive index measurement based on localized surface plasmon resonance. In Conference on Lasers and Electro-Optics/Pacific Rim (p. WPF_20). Optical Society of America.
[6] Mahmud, Z., Herman, S. H., Noor, U. M., & Saharudin, S. (2013, December). Performance characterization of optical fiber oxygen sensor in gas and aqueos phase. In Research and Development (SCOReD), 2013 IEEE Student Conference on (pp. 569-571). IEEE.
[7] Mao, P., Luo, Y., Chen, X., Fang, J., Huang, H., Chen, C., ... & Chen, Z. (2014, September). Design and optimization of multimode fiber sensor based on surface plasmon resonance. In Numerical Simulation of Optoelectronic Devices (NUSOD), 2014 14th International Conference on (pp. 119-120). IEEE.
[8] Villatoro, J., Minkovich, V. P., & Zubia, J. (2015). Photonic crystal fiber interferometric force sensor. IEEE Photonics Technology Letters, 27(11), 1181-1184.
[9] Rao, Y. J. (1997). In-fibre Bragg grating sensors. Measurement science and technology, 8(4), 355.
[10] Liu, W., Li, M., Wang, C., & Yao, J. (2011). Real-time interrogation of a linearly chirped fiber Bragg grating sensor based on chirped pulse compression with improved resolution and signal-to-noise ratio. Journal of Lightwave Technology, 29(9), 1239-1247.
[11] Zhao, L., & Huang, X. (2016, September). Integrated condition monitoring system of transmission lines based on fiber bragg grating sensor. In Condition Monitoring and Diagnosis (CMD), 2016 International Conference on (pp. 667-670). IEEE.
[12] Gold, M. P., & Hartog, A. H. (1983). Ultra-long-range OTDR in single-mode fibres at 1.3 μm. Electronics Letters, 19(13), 463-464.
[13] Zhu, F., Zhang, Y., Xia, L., Wu, X., & Zhang, X. (2015). Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array. Journal of Lightwave Technology, 33(23), 4775-4780.
[14] Aktas, M., Akgun, T., Demircin, M. U., & Buyukaydin, D. (2017, April). Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications. In Fiber Optic Sensors and Applications XIV (Vol. 10208, p. 102080G). International Society for Optics and Photonics.
[15] Tong, Y., Li, Z., Wang, J., & Zhang, C. (2017, May). Improved distributed optical fiber vibration sensor based on Mach-Zehnder-OTDR. In CLEO: Science and Innovations (pp. JW2A-16). Optical Society of America.
[16] Li, T., Wang, A., Murphy, K., & Claus, R. (1995). White-light scanning fiber Michelson interferometer for absolute position–distance measurement. Optics letters, 20(7), 785-787.
[17] Tian, Z., Yam, S. S., & Loock, H. P. (2008). Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. Optics letters, 33(10), 1105-1107.
[18] Yuan, L., Yang, J., & Liu, Z. (2008). A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer. IEEE sensors journal, 8(7), 1114-1117.
[19] Lu, P., Men, L., Sooley, K., & Chen, Q. (2009). Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature. Applied Physics Letters, 94(13), 131110.
[20] Lim, J. H., Jang, H. S., Lee, K. S., Kim, J. C., & Lee, B. H. (2004). Mach–Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings. Optics Letters, 29(4), 346-348.
[21] Blow, K. J., Doran, N. J., & Nayar, B. K. (1989). Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer. Optics letters, 14(14), 754-756.
[22] Dong, X., Tam, H. Y., & Shum, P. (2007). Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Applied Physics Letters, 90(15), 151113.
[23] Krakenes, K., & Blotekjaer, K. (1995). Comparison of fiber-optic Sagnac and Mach-Zehnder interferometers with respect to thermal processes in the fiber. Journal of lightwave technology, 13(4), 682-686.
[24] Kang, K. I., Chang, T. G., Glesk, I., & Prucnal, P. R. (1996). Comparison of Sagnac and Mach–Zehnder ultrafast all-optical interferometric switches based on a semiconductor resonant optical nonlinearity. Applied optics, 35(3), 417-426.
[25] Chtcherbakov, A. A., Swart, P. L., Spammer, S. J., & Lacquet, B. M. (1998, September). Modified Sagnac/Mach-Zehnder interferometer for distributed disturbance sensing. In Fourth Pacific Northwest Fiber Optic Sensor Workshop (Vol. 3489, pp. 60-65). International Society for Optics and Photonics.
[26] Hill, K. O., Fujii, Y., Johnson, D. C., & Kawasaki, B. S. (1978). Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Applied physics letters, 32(10), 647-649.
[27] Brady, D., Hill, K., & Basinger, S. (1993, November). Holographic pulse shaping in organic media. In Lasers and Electro-Optics Society Annual Meeting, 1993. LEOS'93 Conference Proceedings. IEEE (pp. 112-113). IEEE.
[28] Spammer, S. J., Swart, P. L., & Chtcherbakov, A. A. (1997). Merged Sagnac-Michelson interferometer for distributed disturbance detection. Journal of lightwave technology, 15(6), 972-976.
[29] Signorini, A., Faralli, S., Soto, M. A., Sacchi, G., Baronti, F., Barsacchi, R., ... & Di Pasquale, F. (2010, March). 40 km long-range Raman-based distributed temperature sensor with meter-scale spatial resolution. In Optical Fiber Communication Conference (p. OWL2). Optical Society of America.
[30] Zhang, S. M., Lu, F. Y., & Wang, J. (2007). All‐fiber actively Q‐switched Er3+/Yb3+ co‐doped ring laser. Microwave and Optical Technology Letters, 49(9), 2183-2186.
[31] Onstott, J. R., Messerly, M. J., Mikkelson, R. C., & Donalds, L. J. (1990). U.S. Patent No. 4,896,942. Washington, DC: U.S. Patent and Trademark Office.
[32] Hornung, S., Cassidy, S., Yennadhiou, P., & Reeve, M. (1986). The blown fiber cable. IEEE journal on selected areas in communications, 4(5), 679-685.
[33] Kawasaki, B. S., Hill, K. O., & Lamont, R. G. (1981). Biconical-taper single-mode fiber coupler. Optics Letters, 6(7), 327-328.
[34] Georgiou, G., & Boucouvalas, A. C. (1985). Low-loss single-mode optical couplers. IEE Proceedings J (Optoelectronics), 132(5), 297-302.
[35] Mortimore, D. B. (1988). Fiber loop reflectors. Journal of Lightwave Technology, 6(7), 1217-1224.
[36] Ball, G. A., & Glenn, W. H. (1992). Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors. Journal of Lightwave Technology, 10(10), 1338-1343.
[37] Zhang, M., Chen, L. L., Zhou, C., Cai, Y., Ren, L., & Zhang, Z. G. (2009). Mode-locked ytterbium-doped linear-cavity fiber laser operated at low repetition rate. Laser physics letters, 6(9), 657.
[38] Tamura, K., Ippen, E. P., Haus, H. A., & Nelson, L. E. (1993). 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Optics letters, 18(13), 1080-1082.
[39] Park, N., & Wysocki, P. F. (1996). 24-line multiwavelength operation of erbium-doped fiber-ring laser. IEEE Photonics Technology Letters, 8(11), 1459-1461.
[40] Kersey, A. D., Marrone, M. J., & Davis, M. A. (1991). Polarisation-insensitive fibre optic Michelson interferometer. Electronics letters, 27(6), 518-520.
|