帳號:guest(3.145.64.152)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王偉丞
作者(外文):Wang, Wei-Cheng
論文名稱(中文):用於高空間解析氣體濃度分布偵測的混沌差別吸收光達之研究
論文名稱(外文):Chaos Differential Absorption Lidar for High-Resolution Range-Resolved Gas Concentration Detection
指導教授(中文):林凡異
指導教授(外文):Lin, Fan-Yi
口試委員(中文):黃承彬
阮于珊
口試委員(外文):Huang, Chen-Bin
Juan, Yu-Chan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:104066528
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:45
中文關鍵詞:光達差別吸收光達氣體偵測高解析度距離分析
外文關鍵詞:lidardifferentialabsorptionrange-resolvedhigh-resolution
相關次數:
  • 推薦推薦:0
  • 點閱點閱:182
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  在本篇論文中我們提出將混沌震盪態結合差別吸收光達技術,建立應用於短距離氣體分子濃度分布測量的混沌差別吸收光達系統理論模型,並用數值模擬分析探討高空間解析度的氣體分子濃度分布測量技術實現之可能性。半導體雷射在光回饋(OF)系統下可以產生混沌震盪態(CO),在時域上非常近似於理想的隨機亂數訊號,擁有極短的自相關值半高全寬,可用來發展高精準度的空間量測技術。在過往所有差別吸收光達研究中,不論在傳輸端使用何種訊號調製方式,空間解析度都停留在數十公尺以上,不足的空間解析度使得文獻中幾乎找不到將差別吸收光達技術應用在空間分布測量的研究,這也是我們將混沌震盪態用在差別吸收光達系統後要去解決的問題。
  在理論模型中我們用混沌震盪態作為差別吸收光達系統傳輸端的輸出訊號,模擬混沌差別吸收光達系統測量二氧化碳分子濃度的完整分布。經過分析計算,本研究的混沌差別吸收光達空間解析度在理論上可達1.2公分,遠優於傳統差別吸收光達結果,並且在測量範圍標準約10~60公尺、測量時間小於1秒的情況下,氣體分子濃度分布還原精確度在理論上不超過2%,與過去差別吸收光達研究的精確度有著相同水準。
  最後,我們透過分析結果確認,使用混沌震盪態作為光源訊號的差別吸收光達系統在理論上能夠實現空間中精準的氣體濃度分布測量,未來可以用這項技術發展高準確度的大氣觀測技術以及高效率的氣體災害防治手段。
Semiconductor lasers can generate chaotic oscillation (CO) state when subject to optical feedback (OF). Since the CO state is similar to an ideal random signal in the time domain, it has a delta function-liked auto-correlation trace with a very narrow full-width at half-maximum(FWHM) that can be used in developing high precision spatial measurement methods.
In this thesis, we propose to establish a theoretical model of a chaos differential absorption lidar(chaos DIAL) and study its feasibility in measuring high resolution range-resolved gas molecules concentrations. Compared to the limited range resolution of conventional DIALs of around tens of meters, the resolution of the proposed chaos DIAL can be orders of magnitude higher benefited by the CO signals with broader bandwidths.
In this study, we operate the laser in a CO state and use it as the transmitter for the chaos DIAL system. We simulate the concentration distribution measurement of carbon-dioxide using the chaos DIAL system with the theoretical model established. We show that the range resolution of the chaos DIAL can be just 1.2 cm that is much lower than the conventional DIALs. We also show that the retrieval precision of the chaos DIAL can be as small as 2% within the detection range of 10~60m with just 1s of the acquisition time.
Through the theoretical analyses, we show that the chaos DIAL is feasible of high-resolution range-resolved gas concentration distribution measurement. This technique can be further used to develop high-accuracy atmospheric detection and high-efficiency gas disaster prevention method in the future.
致謝.......................................I
摘要.....................................III
Abstract..................................IV
目錄.......................................V
圖目錄...................................VII
1 緒論.....................................1
1.1 前言...................................1
1.2 研究動機...............................2
1.3 章節概述...............................3
2 混沌差別吸收光達原理與理論模型.............5
2.1 半導體雷射的非線性動態行為...............6
2.2 自相關值計算............................9
2.3 時間延遲特徵的抑制.....................10
2.4 光達方程式............................14
2.5 差別吸收光達...........................18
3 模擬成果分析.............................21
3.1 模擬程序..............................22
3.2 空間解析度與比對誤差...................28
3.3 最小可偵測濃度變化.....................31
3.4 氣體還原濃度解析度與準確度..............32
4 比較、結論與未來展望.....................36
4.1 與傳統DIAL之比較......................36
4.2 結論..................................38
4.3 未來展望..............................40
參考文獻..................................41
R. Lang, and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties", IEEE J. Quantum Electron. 16, 347-355 (1980).

K. Petermann, "External optical feedback phenomena in semiconductor lasers", SPIE. 2450, 121-129 (1995).

S. K. Hwang, J. M. Liu, and J. K. White, "Characteristics of period-one oscillations in semiconductor lasers subject to optical injection", IEEE Photonics Technol. Lett. 10, 974-981 (2004).

S. C. Chan, S. K. Hwang, and J. M. Liu, "Period-one oscillations for photonic microwave transmission using an optically injected semiconductor lasers", Opt. Express 15, 14921-14935 (2007).

S. C. Chan and J. M. Liu, "Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics", IEEE Photonics Technol. Lett. 10, 1025-1032 (2004).

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, "Direct frequency modulation AlGaAs in semiconductor lasers", IEEE J. Quantum Electron. 18, 582-595 (1982).

F. Y. Lin, and J. M. Liu, "Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback", Opt. Commun. 221, 176-180 (2003).

F. Y. Lin and J. M. Liu, "Chaotic radar using nonlinear laser dynamics", IEEE J. Quantum Electron. 40, 815-820 (2004).

F. Y. Lin and J. M. Liu, "Chaotic lidar", IEEE J. of Sel. Top. Quantum Electron. 10, 991-994 (2004).

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fisher, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links", Nature 438, 343-346 (2005).

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, "Fast physical random bit generation with chaotic semiconductor lasers", Nat. Photonics 2, 728-732 (2008).

E. V. Browell, S. Ismail, and W. B. Grant, "Differential absorption lidar (DIAL) measurements from air and space", Appl. Phys. B 67, 399-410 (1998).

A. F. Chase, D. Z. Chase, J. F. Weishampel, J. B. Drake, R. L. Shrestha, K. C. Slatton, J. J. Awe, and W. E. Carter, "Airborne lidar, archaeology, and the ancient Maya landscape at Caracol, Belize", J. of Archaeol. Sci. 38, 387-398 (2004).

C. L. Glennie, W. E. Carter, R. L. Shrestha, and W. E. Dietrich, "Geodetic imaging with airborne lidar: the earth's surface revealed", Rep. Prog. Phys. 76 (8): 086801 (2013).

R. T. H. Collis and P. B. Russell, "Lidar measurement of particles and gases by elastic backscattering and differential absorption", in Laser Monitoring of the atmosphere, Vol. 14, 102-109 (1976).

S. K. Hwang, and J. M. Liu, "Dynamical characteristics of an optically injected semiconductor laser", Opt. Commun. 183, 195-205 (2000).

N. Takeuchi, N. Sugimoto, H. Baba and K. Sakurai, "Random modulation cw lidar", Appl. Opt. 22, 1382 (1983).

N. Takeuchi, H. Baba, K. Sakurai and T. Ueno, "Diode-laser random-modulation cw lidar", Appl. Opt. 25, 63 (1986).

N. Takeuchi, N. Sugimoto, K. Sakurai, H. Baba and T. Ueno, "Pseudo-random-modulation cw lidar for air pollution measurement", レーザー研究 11, 763 (1983).

S. S. Li, Q. Liu, and S. C. Chan, "Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser", IEEE Photonics J. 4, 1930-1935 (2012).

J. M. Liu and T. B. Simpson, "Four-wave mixing and optical modulation in a semiconductor laser", IEEE J. Quantum Electron. 30, 957-965 (1994).

V. S. Udaltsov, L. Larger, J. P. Geodgebuer, A. Locquet, and D. S. Citrin, "Time delay identification in chaotic cryptosystems ruled by delay-differential equations", J. Opt. Technol. 72, 373-377 (2005).

D. Rontani, A. Locquet, M. Sciamanna and D. S. Citrin, "Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback", Opt. Lett. 32, 2960-2962 (2007).

S. S. Li and S. C. Chan, "Chaotic time-delay signature suppression in a semiconductor laser with frequency detuned grating feedback", IEEE J. of Sel. Top. Quantum Electron. 21, 1800812 (2015).

J. G. Wu, G. Q. Xia, and Z. M. Wu, "Suppression of time-delay signatures of chaotic output in a semiconductor laser with double optical feedback", Opt. Express 17, 20124-20133 (2009).

A. B. Wang, Y. B. Yang, B. J. Wang, B. B. Zhang, L. Li, and Y. C. Wang, "Generation of wideband chaos with suppressed time-delay signature by delayed self-interference", Opt. Express 21, 8701-8710 (2013).

K. J. Wang, "Suppression of the time delay signature and development of random number generator in chaotic semiconductor lasers by loss-compensated recirculating delayed self-heterodyne interferometer", 國立清華大學光電工程研究所碩士論文, 10-17 (2016).

K. Stelmaszczyk, M. Dell'Aglio, S. Chudzynski, T.Stacewics, and L. Woste, "Analytical function for lidar geometrical compression form-factor calculations", Appl. Opt. 44, 1323-1331 (2005).

C. Bellecci and F. De Donato, "Effect of the differential geometric form factor on differential absorption lidar measurements with topographical targets", Appl. Opt. 38, 5212-5217 (1999).

R. A. Measures, "Laser remote sensing: fundamentals and applications" Wiley, pp. 38-45

L. Rothman, I. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. Brown, A. Campargue, K. Chance, E. Cohen, L. Coudert, V. Devi, B. Drouin, A. Fayt, J.-M. Flaud, R. Gamache, J. Harrison, J.-M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. L. Roy, G. Li, D. Long, O. Lyulin, C. Mackie, S. Massie, S. Mikhailenko, H. MÃijller, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. Polovtseva, C. Richard, M. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. Toon, V. Tyuterev, and G. Wagner, "The HITRAN2012 molecular spectroscopic database", J. Quant. Spectrosc. Radiat. Transfer. 130, 4-50 (2013).

X. Ai, A. Perez-Serrano, M. Quatrevalet, R. W. Nock, N. Dahnoun, G. Ehret, I. Esquivias, and J. G. Rarity, "Analysis of a random modulation single photon counting differential absorption lidar system for space-borne atmospheric CO_2 sensing", Opt. Exp. Vol. 24 no.18, 21119-21133 (2016).

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, "Space-borne remote sensing of CO_2, CH_4, and N_2O by integrated path differential absorption lidar: A sensitivity analysis", Appl. Phys. B 90, 593-608 (2008).

R. J. Hyndman and A. B. Koehler, "Another look at measures of forecast accuracy", International Journal of Forecasting. 22, 679-688 (2006).

G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Bames, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, "Side-line tunable laser transmitter for differential absorption lidar measurements of CO_2: design and application to atmospheric measurements", Appl. Opt. 47, 944-956 (2008).

H. Liu, T. Chen, R. Shu, G. Hong, L. Zheng, Y. Ge, and Y. Hu, "Wavelength-locking-free 1.57microm differential absorption lidar for CO_2 sensing", Opt. Exp. Vol. 22 no.22, 27675-27680 (2014).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *