|
[1] M. C. Amann, T. Bosch, M. Lescure, R. Myllyl ̈a, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001). [2] X. Ai, A. P ́erez-Serrano, M. Quatrevalet, R. W. Nock, N. Dahnoun, G. Ehret, I. Es- quivias, and J. G. Rarity, “Analysis of a random modulation single photon counting differential absorption lidar system for space-borne atmospheric CO2 sensing,” Opt. Express 24(18), 21119–21133 (2016). [3] M. Quatrevalet, X. Ai, A. P ́erez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23(2), 157–167 (2017). [4] R. Sanz-Cortiella, J. Llorens-Calveras, A. Escol`a, J. Arno ́-Satorra, M. Ribes-Dasi, J. Masip-Vilalta, F. Camp, F. Gra`cia-Aguil ́a, F. Solanelles-Batlle, S. Planas-DeMart ́ı, T. Pallej`a-Cabr ́e, J. Palacin-Roca, E. Gregorio-Lopez, I. Del-Moral-Mart ́ınez, and J. R. Rosell-Polo, “Innovative LIDAR 3D Dynamic Measurement System to Estimate Fruit-Tree Leaf Area,” Sensors 11(6), 5769–5791 (2011). 36 [5] S. Ramasamy, R. Sabatini, A. Gardi, and J. Liu, “LIDAR obstacle warning and avoidance system for unmanned aerial vehicle sense-and-avoid,” Aerosp. Sci. Technol. 55, 344–358 (2016). [6] M. S. Darms, P. E. Rybski, C. Baker, and C. Urmson, “Obstacle Detection and Tracking for the Urban Challenge” IEEE Trans. Intell. Transp. Syst. 10(3), 475–485 (2009). [7] R. Halterman, M. Bruch, “Velodyne HDL-64E lidar for unmanned surface vehicle obstacle detection,” Proc. SPIE 7692, 224–231 (2010). [8] P. L. Richard, N. Pouliot, and S. Montambault, “Introduction of a LIDAR-based obstacle detection system on the lineScout power line robot,” IEEE/ASME Interna- tional Conference, 1734–1740 (2014). [9] G. Kim, J. Eom, and Y. Park, “Investigation on the occurrence of mutual interfer- ence between pulsed terrestrial LIDAR scanners,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV) (IEEE, 2015), 437–442. [10] J. Wojtanowski, M. Zygmunt, M. Kaszczuk, Z. Mierczyk, and M. Muzal “Compari- son of 905 nm and 1550 nm semiconductor laser rangefinders performance deteriora- tion due to adverse environmental conditions” Opto-Electron. Rev. 22(3), 183–190 (2014). [11] N. Takeuchi, H. Baba, K. Sakurai, and T. Ueno, “Diode-laser random-modulation cw lidar,” Appl. Opt. 25(1), 63–67 (1986). [12] A. Arias, M. G. Shlyagin, S. V. Miridonov, and R. M. Manuel, “Phase-sensitive correlation optical time-domain reflectometer using quantum phase noise of laser light,” Opt. Express 23(23), 30347–30356 (2015). 37
[13] F. Y. Lin and J. M. Liu, “Chaotic Radar Using Nonlinear Laser Dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004). [14] F. Y. Lin and J. M. Liu, “Chaotic Lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004). [15] D. Zhong, G. Xu, W. Luo, and Z. Xiao, “Real-time multi-target ranging based on chaotic polarization laser radars in the drive- response VCSELs,” Opt. Express 25(18), 21684–21704 (2017). [16] International Electrotechnical Commission (IEC), “Safety of laser products. Part 1: Equipment classification, requirements and user’s guide,” Standard IEC 60825- 1:2001 (International Electrotechnical Commission, Geneva, 2001). [17] C. H. Cheng, Y. C. Chen, J. D. Chen, D. K. Pan, K. T. Ting, and F. Y. Lin, “3D pulsed chaos lidar system,” Opt. Express 26(9), 12230–12241 (2018). [18] I. Aldaya, C. Gosset, C. Wang, G. Campuzano, F. Grillot, and G. Castan ̃o ́n, “Pe- riodic and aperiodic pulse generation using optically injected DFB laser,” Electron. Lett. 51(3), 280–282 (2015). [19] K. Myneni, T. A. Barr, and B. R. Reed, “High-precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001). [20] F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with de- layed negative optoelectronic feedback,” IEEE J. Quantum Electron. 39(4), 562–568 (2002). [21] A. Valle, L. Pesquera, S. I. Turovets, and J. M. Lo ́pez, “Nonlinear dynamics of current-modulated vertical-cavity surface-emitting lasers,” Opt. Commun. 208, 173– 182 (2002). 38
[22] A. Valle, M. Arizaleta, H. Thienpont, K. Panajotov, and M. Sciamanna, “Transverse mode competition effects on the dynamics of gain-switched vertical- cavity surface- emitting lasers,” Appl. Phys. Lett. 93, 131103 (2008). [23] M. Jofre, M. Curty, F. Steinlechner, G. Anzolin, J. P. Torres, M. W. Mitchell, and V. Pruneri, “True random numbers from amplified quantum vacuum,” Opt. Express 19(21), 20665–20672 (2011). [24] C. Abell ́an, W. Amaya, M. Jofre, M. Curty, A. Ac ́ın, J. Capmany, V. Pruneri, and M. W. Mitchell, “Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode,” Opt. Express 22(2), 1645–1654 (2014). [25] C. Y. Chen, C. H. Cheng, D. K. Pan, and F. Y. Lin, “Experimental generations and analyses of chaos-modulated pulses for pulsed chaos lidar applications based on gain-switched semiconductor lasers subject to optical feedback,” Opt. Express, accepted in 2018, in press. [26] M. N. Bera, A. Ac ́ın, M. Ku ́s, M. W. Mitchell, and M. Lewenstein, “Randomness in quantum mechanics: philosophy, physics and technology,” Rep. Prog. Phys. 80(12), 124001 (2017). [27] J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22(8), 543–545 (1997). [28] M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, A. Volkovskii, “Chaotic pulse position modulation: a robust method of communicating with chaos,” IEEE Commun. Lett. 4(4), 128–130 (2000). 39
[29] L. Fortuna, M. Frasca, A. Rizzo, “Chaotic pulse position modulation to improve the efficiency of sonar sensors,” IEEE Trans. Instrum. Meas. 52(6), 1809–1814 (2003). [30] P. Du, D. Geng, W. Wang, and M. Gong, “Laser detection of remote targets applying chaotic pulse position modulation,” Opt. Eng. 54(11), 114102 (2015). [31] F. Zhang, P. Du, Q. Liu, M. Gong, and X. Fu, “Adaptive strategy for CPPM single- photon collision avoidance LIDAR against dynamic crosstalk,” Opt. Express 25(11), 12237–12250 (2017). [32] P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008). [33] N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192– 9206 (2010). [34] Y. Liang, J. Huang, M. Ren, B. Feng, X. Chen, E. Wu, G. Wu, and H. Zeng, “1550- nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity,” Opt. Express 22(4), 4662–4670 (2014). [35] A. Marandi, N. C. Leindecker, K. L. Vodopyanov, and R. L. Byer, “All-optical quan- tum random bit generation from intrinsically binary phase of parametric oscillators,” Opt. Express 20(17), 19322–19330 (2012). [36] S. Sunada, T. Harayama, K. Arai, K. Yoshimura, K. Tsuzuki, A. Uchida, and P. Davis, “Random optical pulse generation with bistable semiconductor ring lasers,” Opt. Express 19(8), 7439–7450 (2011). 40
[37] V. N. Chizhevsky, “Symmetrization of single-sided or nonsymmetrical distributions: The way to enhance a generation rate of random bits from a physical source of randomness,” Phys. Rev. E 82(5), 050101 (2010). [38] S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of Period-One Oscillations in Semiconductor Lasers Subject to Optical Injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004). [39] S. C. Chan, S. K. Hwang, and J.M. Liu, “Period-one oscillation for photonic mi- crowave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007). [40] J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photonics Technol. Lett. 8(1), 34–36 (1996). [41] Y. Okajima, S. K. Hwang, and J. M. Liu, “Experimental observation of chirp re- duction in bandwidth-enhanced semiconductor lasers subject to strong optical injec- tion,” Opt. Commun. 219, 357–364 (2003). [42] J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photonics Technol. Lett. 9(10), 1325–1327 (1997). [43] T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997). 41
[44] T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semi- conductor laser subject to external optical injection,” Opt. Commun. 9, 135–151 (2003). [45] M. Yamada, “ Theory of Mode Competition Noise in Semiconductor Injection Lasers,” IEEE J. Quantum Electron. 22(7), 1052–1059 (1986). [46] M. Ahmed and M. Yamada, “Influence of Instantaneous Mode Competition on the Dynamics of Semiconductor Lasers,” IEEE J. Quantum Electron. 38(6), 682–693 (2002). [47] L. Svilainis, K. Lukoseviciute, V. Dumbrava, and A. Chaziachmetovas, “Subsample interpolation bias error in time of flight estimation by direct correlation in digital domain,” Measurement 46(10), 3950–3958 (2013). |