帳號:guest(3.144.3.183)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):丁楷庭
作者(外文):Ting, Kai-Ting
論文名稱(中文):利用雙光注入一增益調製Fabry-Perot半導體雷射產生用於隨機調製脈衝光達之隨機開關調製脈衝之研究
論文名稱(外文):Generation of random on-off modulation pulses by optically injecting a gain-switched Fabry-Perot semiconductor laser with a dual-mode injection for random-modulation pulsed lidar applications
指導教授(中文):林凡異
指導教授(外文):Lin, Fan-Yi
口試委員(中文):黃承彬
阮于珊
口試委員(外文):Huang, Chen-Bin
Juan, Yu-Shan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:104066527
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:42
中文關鍵詞:多模半導體雷射雙光注入脈衝光達增益調製隨機開關調製
外文關鍵詞:Fabry-Perot semiconductor laserDual-mode optical injectionPulsed lidarGain-switchingRadom on-off modulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:96
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文研究利用雙光注入一增益調製 Fabry-P\'erot半導體雷射產生可用於隨機調製脈衝光達應用之隨機開關脈衝光源訊號。透過將一道主雷射光(ML1)注入增益調製副雷射(SL)之一個共振模並操作在其雙穩態,經由增益競爭效應 (gain-competition)副雷射之中心模將可產生隨機開關調製之光脈衝。透過注入第二道主雷射光(ML2)於副雷射之中心模中,輸出脈衝訊號的穩定性及強度可大幅增加以適用於閥值偵測及時域相關單光計數(time-correlated single photon counting)等技術。於此論文中,我們研究不同注入參數下的雷射動態行為,並找出雙穩態的操作調件。在不需任何數位電路及外部光電調製器的架構下,我們成功透過雙光注入產生隨機開關調製脈衝訊號。我們分析訊雜比(signal-to-noise ratio)與成功偵測率(detection probability),驗證所產生之脈衝訊號適合用於隨機調製脈衝光達應用,並具有無偵測距離模糊(no range ambiguity)及抗干擾(anti-interference)之特點。在主雷射注入強度分別為0.418及0.038、互相關長度90~${\mu}$s的條件下,即使遭受高達49組類似之隨機脈衝訊號干擾,我們驗證本架構仍能保持成功偵測率為1之優異表現。
We study the generation of random on-off modulation pulses by optically injecting a gain-switched Fabry-P{\'e}rot semiconductor laser with a dual-mode injection for random-modulation pulsed lidar applications. In the dual-mode injection scheme proposed, the first master laser (ML1) injecting on the resonant sidemode of the gain-switched slave laser (SL) randomly locks the injected sidemode and suppresses the output pulses in the center mode through gain-competition. The second master laser (ML2) injecting on the center mode then stabilizes and enhances the output pulses to have equal amplitudes suitable for digital threshold detection and time-correlated single photon counting. Under different injection conditions, we identify dynamical states including unlocked, stable locking, bistable, and instability. By operating the laser in the bistable states randomly switching between the unlocked and stable locking states, we successfully generate random on-off modulation pulses without employing any digital circuits or external modulators. We analyze the signal-to-noise ratio (SNR) and detection probability of the proposed scheme to show its feasibility in random-modulation pulsed lidar applications. Moreover, we study its anti-interference capability by adding interference from additional channels with similar modulated pulses. We show that, with injection strengths of 0.418 and 0.038 from the ML1 and ML2 and a correlation length $T_{\rm{c}}=90~\mu$s, a detection probability of 1 can be readily achieved even under the interference from more than 49 additional channels.
致謝 I
中文摘要 II
Abstract III
Contents IV
List of Figures VI

1 Introduction
1.1 Overview....................................1
1.2 Background of Dynamical States in Semiconductor Lasers . . . . . . . .4
1.3 Outline of Thesis ...............................6

2 Generation of Random On-Off Modulation Pulses
2.1 ExperimentalSetup.............................. 7
2.2 Characterization of Random On-Off Modulation Pulses . . . . . . . . . .9

3 Performance Analyses of Random On-Off Modulation Pulses for Random- Modulation Pulsed Lidar Applications

3.1 ExperimentalSetup.............................. 17
3.2 InfluenceofInjectionStrength........................ 19
3.3 Signal-to-Noise Ratio and Detection Probability . . . . . . . . . . . . . . 21
3.3.1 InfluenceofSignalDegradation ................... 26
3.3.2 InfluenceofMulti-ChannelInterference . . . . . . . . . . . . . . . 27
3.4 StabilityoftheCross-CorrelationTrace................... 30

4 Conclusion
4.1 Summary ................................... 33
4.2 Future Research................................ 35
[1] M. C. Amann, T. Bosch, M. Lescure, R. Myllyl ̈a, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[2] X. Ai, A. P ́erez-Serrano, M. Quatrevalet, R. W. Nock, N. Dahnoun, G. Ehret, I. Es- quivias, and J. G. Rarity, “Analysis of a random modulation single photon counting differential absorption lidar system for space-borne atmospheric CO2 sensing,” Opt. Express 24(18), 21119–21133 (2016).
[3] M. Quatrevalet, X. Ai, A. P ́erez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23(2), 157–167 (2017).
[4] R. Sanz-Cortiella, J. Llorens-Calveras, A. Escol`a, J. Arno ́-Satorra, M. Ribes-Dasi, J. Masip-Vilalta, F. Camp, F. Gra`cia-Aguil ́a, F. Solanelles-Batlle, S. Planas-DeMart ́ı, T. Pallej`a-Cabr ́e, J. Palacin-Roca, E. Gregorio-Lopez, I. Del-Moral-Mart ́ınez, and J. R. Rosell-Polo, “Innovative LIDAR 3D Dynamic Measurement System to Estimate Fruit-Tree Leaf Area,” Sensors 11(6), 5769–5791 (2011).
36
[5] S. Ramasamy, R. Sabatini, A. Gardi, and J. Liu, “LIDAR obstacle warning and avoidance system for unmanned aerial vehicle sense-and-avoid,” Aerosp. Sci. Technol. 55, 344–358 (2016).
[6] M. S. Darms, P. E. Rybski, C. Baker, and C. Urmson, “Obstacle Detection and Tracking for the Urban Challenge” IEEE Trans. Intell. Transp. Syst. 10(3), 475–485 (2009).
[7] R. Halterman, M. Bruch, “Velodyne HDL-64E lidar for unmanned surface vehicle obstacle detection,” Proc. SPIE 7692, 224–231 (2010).
[8] P. L. Richard, N. Pouliot, and S. Montambault, “Introduction of a LIDAR-based obstacle detection system on the lineScout power line robot,” IEEE/ASME Interna- tional Conference, 1734–1740 (2014).
[9] G. Kim, J. Eom, and Y. Park, “Investigation on the occurrence of mutual interfer- ence between pulsed terrestrial LIDAR scanners,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV) (IEEE, 2015), 437–442.
[10] J. Wojtanowski, M. Zygmunt, M. Kaszczuk, Z. Mierczyk, and M. Muzal “Compari- son of 905 nm and 1550 nm semiconductor laser rangefinders performance deteriora- tion due to adverse environmental conditions” Opto-Electron. Rev. 22(3), 183–190 (2014).
[11] N. Takeuchi, H. Baba, K. Sakurai, and T. Ueno, “Diode-laser random-modulation cw lidar,” Appl. Opt. 25(1), 63–67 (1986).
[12] A. Arias, M. G. Shlyagin, S. V. Miridonov, and R. M. Manuel, “Phase-sensitive correlation optical time-domain reflectometer using quantum phase noise of laser light,” Opt. Express 23(23), 30347–30356 (2015).
37

[13] F. Y. Lin and J. M. Liu, “Chaotic Radar Using Nonlinear Laser Dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[14] F. Y. Lin and J. M. Liu, “Chaotic Lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[15] D. Zhong, G. Xu, W. Luo, and Z. Xiao, “Real-time multi-target ranging based on chaotic polarization laser radars in the drive- response VCSELs,” Opt. Express 25(18), 21684–21704 (2017).
[16] International Electrotechnical Commission (IEC), “Safety of laser products. Part 1: Equipment classification, requirements and user’s guide,” Standard IEC 60825- 1:2001 (International Electrotechnical Commission, Geneva, 2001).
[17] C. H. Cheng, Y. C. Chen, J. D. Chen, D. K. Pan, K. T. Ting, and F. Y. Lin, “3D pulsed chaos lidar system,” Opt. Express 26(9), 12230–12241 (2018).
[18] I. Aldaya, C. Gosset, C. Wang, G. Campuzano, F. Grillot, and G. Castan ̃o ́n, “Pe- riodic and aperiodic pulse generation using optically injected DFB laser,” Electron. Lett. 51(3), 280–282 (2015).
[19] K. Myneni, T. A. Barr, and B. R. Reed, “High-precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
[20] F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with de- layed negative optoelectronic feedback,” IEEE J. Quantum Electron. 39(4), 562–568 (2002).
[21] A. Valle, L. Pesquera, S. I. Turovets, and J. M. Lo ́pez, “Nonlinear dynamics of current-modulated vertical-cavity surface-emitting lasers,” Opt. Commun. 208, 173– 182 (2002).
38

[22] A. Valle, M. Arizaleta, H. Thienpont, K. Panajotov, and M. Sciamanna, “Transverse mode competition effects on the dynamics of gain-switched vertical- cavity surface- emitting lasers,” Appl. Phys. Lett. 93, 131103 (2008).
[23] M. Jofre, M. Curty, F. Steinlechner, G. Anzolin, J. P. Torres, M. W. Mitchell, and V. Pruneri, “True random numbers from amplified quantum vacuum,” Opt. Express 19(21), 20665–20672 (2011).
[24] C. Abell ́an, W. Amaya, M. Jofre, M. Curty, A. Ac ́ın, J. Capmany, V. Pruneri, and M. W. Mitchell, “Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode,” Opt. Express 22(2), 1645–1654 (2014).
[25] C. Y. Chen, C. H. Cheng, D. K. Pan, and F. Y. Lin, “Experimental generations and analyses of chaos-modulated pulses for pulsed chaos lidar applications based on gain-switched semiconductor lasers subject to optical feedback,” Opt. Express, accepted in 2018, in press.
[26] M. N. Bera, A. Ac ́ın, M. Ku ́s, M. W. Mitchell, and M. Lewenstein, “Randomness in quantum mechanics: philosophy, physics and technology,” Rep. Prog. Phys. 80(12), 124001 (2017).
[27] J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22(8), 543–545 (1997).
[28] M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, A. Volkovskii, “Chaotic pulse position modulation: a robust method of communicating with chaos,” IEEE Commun. Lett. 4(4), 128–130 (2000).
39

[29] L. Fortuna, M. Frasca, A. Rizzo, “Chaotic pulse position modulation to improve the efficiency of sonar sensors,” IEEE Trans. Instrum. Meas. 52(6), 1809–1814 (2003).
[30] P. Du, D. Geng, W. Wang, and M. Gong, “Laser detection of remote targets applying chaotic pulse position modulation,” Opt. Eng. 54(11), 114102 (2015).
[31] F. Zhang, P. Du, Q. Liu, M. Gong, and X. Fu, “Adaptive strategy for CPPM single- photon collision avoidance LIDAR against dynamic crosstalk,” Opt. Express 25(11), 12237–12250 (2017).
[32] P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008).
[33] N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192– 9206 (2010).
[34] Y. Liang, J. Huang, M. Ren, B. Feng, X. Chen, E. Wu, G. Wu, and H. Zeng, “1550- nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity,” Opt. Express 22(4), 4662–4670 (2014).
[35] A. Marandi, N. C. Leindecker, K. L. Vodopyanov, and R. L. Byer, “All-optical quan- tum random bit generation from intrinsically binary phase of parametric oscillators,” Opt. Express 20(17), 19322–19330 (2012).
[36] S. Sunada, T. Harayama, K. Arai, K. Yoshimura, K. Tsuzuki, A. Uchida, and P. Davis, “Random optical pulse generation with bistable semiconductor ring lasers,” Opt. Express 19(8), 7439–7450 (2011).
40

[37] V. N. Chizhevsky, “Symmetrization of single-sided or nonsymmetrical distributions: The way to enhance a generation rate of random bits from a physical source of randomness,” Phys. Rev. E 82(5), 050101 (2010).
[38] S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of Period-One Oscillations in Semiconductor Lasers Subject to Optical Injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[39] S. C. Chan, S. K. Hwang, and J.M. Liu, “Period-one oscillation for photonic mi- crowave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[40] J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photonics Technol. Lett. 8(1), 34–36 (1996).
[41] Y. Okajima, S. K. Hwang, and J. M. Liu, “Experimental observation of chirp re- duction in bandwidth-enhanced semiconductor lasers subject to strong optical injec- tion,” Opt. Commun. 219, 357–364 (2003).
[42] J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photonics Technol. Lett. 9(10), 1325–1327 (1997).
[43] T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
41

[44] T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semi- conductor laser subject to external optical injection,” Opt. Commun. 9, 135–151 (2003).
[45] M. Yamada, “ Theory of Mode Competition Noise in Semiconductor Injection Lasers,” IEEE J. Quantum Electron. 22(7), 1052–1059 (1986).
[46] M. Ahmed and M. Yamada, “Influence of Instantaneous Mode Competition on the Dynamics of Semiconductor Lasers,” IEEE J. Quantum Electron. 38(6), 682–693 (2002).
[47] L. Svilainis, K. Lukoseviciute, V. Dumbrava, and A. Chaziachmetovas, “Subsample interpolation bias error in time of flight estimation by direct correlation in digital domain,” Measurement 46(10), 3950–3958 (2013).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *