帳號:guest(13.58.133.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳奕勳
作者(外文):Chen, Yi-Hsun
論文名稱(中文):利用快速熱熔磊晶法製作銻化鎵之金屬-半導體-金屬光偵測器
論文名稱(外文):Fabrication of Metal-Semiconductor-Metal GaSb Photodetectors on Si Substrate by Rapid Melt Growth Method
指導教授(中文):李明昌
指導教授(外文):Lee, Ming-Chang
口試委員(中文):黃智方
王立康
口試委員(外文):Huang, Chih-Fang
Wang, Li-Kang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:104066524
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:78
中文關鍵詞:銻化鎵光偵測器快速熱熔磊晶法蕭特基二極體
外文關鍵詞:GaSbphotodetectorRMGschottky diode
相關次數:
  • 推薦推薦:0
  • 點閱點閱:255
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
多年來,在半導體的產業裡,多以矽晶元作為材料,其優點有成本低、容易取得、產能大等等,但近幾年光纖通訊發展蓬勃,使得人們對於紅外光波長的通訊波段有著極大的需求,因此,相應的需要能適用於此波段的光電元件。然而,以矽來說,矽的能帶約1.11ev且其為間接能隙,不僅發光效率差且其對1310~1550 nm波段的光吸收效率也不高,不適合當作通訊用之光電元件。
該論文主要探討適用於紅外光之光偵測器,材料選用III-V族半導體銻化鎵(GaSb),其能帶約為0.72ev,不管對於1310nm或是1550nm的光都有良好的吸收率。以往過去的文獻都是利用MBE或是MOCVD來製備銻化鎵,其成本高且耗時。然而,在本文中製備銻化鎵的方法是利用電子束及熱蒸鍍共蒸鍍的方式來製作,雖然剛鍍上的銻化鎵膜品質不及MOCVD或是MBE,但本文所使用的快速熱熔磊晶法(RMG)可使銻化鎵達到單晶的品質,且其優點為製程快速及成本低。
此外,在光偵測器的研究領域中,已有各式的偵測器被提出,如:APD、PN、PIN及MSM等等,其中MSM架構下的光偵測器有速度快及製程簡單等優點。利用RMG的方式將GaSb與Si整合並製作一個MSM光偵測器將會是一個新穎的設計。
Over decades, silicon semiconductor industry grows rapidly due to advanced CMOS technology as well as relatively low cost for silicon and stable material properties. Silicon-based optoelectronics, benefited from the matured IC industry, receives a lot of attention recently. One of the key applications is high-speed photodetector for optical communication or optical links. However, Si is transparent for infrared wavelength that is usually used in optical communication because of its bandgap energy and it is indirect bandgap which is inappropriate for emission.
This thesis mainly discussed the photodetector which was suitable for infrared wavelength. We chose the III-V semiconductor Gallium Antimonide (GaSb) as our material because it has good absorption rate for both 1310nm and 1550nm wavelength. Most of GaSb materials were made by MBE or MOCVD according to the literature; however, it took not only a lot of time during the process but also high cost. In this thesis, we made GaSb material by E-gun and Thermal co-evaporation. Although the quality of as-Gasb was not superior to the GaSb made by MBE or MOCVD, it still can be fixed by RMG process and transformed into monocrystalline.
Moreover, many kind of photodetectors had been presented in the optoelectronic field, such as APD, PN, PIN and MSM. Among these photodetector, MSM structure offered the advantages of high-speed and simple fabrication. Using RMG method to integrate GaSb with Si substrate as a MSM photodetector would be a novel design.
摘要 II
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 3
1.3論文架構 7
第二章 理論背景 8
2.1銻化鎵元素介紹 8
2.2矽與III-V族異質整合 12
2.3快速熱熔磊晶法原理 14
2.4金屬-半導體-金屬 光子偵測器[21-23] 20
第三章 元件結構模擬設計 35
3.1光柵模擬與設計[31, 32] 35
3.2絕熱於主動層及散熱方向 39
3.3隔離層(isolation layer)設計 41
第四章 元件製作流程 43
4.1元件製作流程圖 43
4.2元件製作細節以及重要參數 45
第五章 實驗量測與分析 53
5.1實驗架設與量測方法 53
5.2銻鎵比例及散熱窗對磊晶的影響 56
5.3 RMG參數對磊晶之影響 60
5.4光響應量測 66
第六章 結果與討論 74
6.1結論 74
參考資料 76

[1]. Adachi, S., Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y. Journal of Applied Physics, 1989. 66(12): p. 6030-6040.
[2]. Zhou, W., et al., High Hole Mobility of GaSb Relaxed Epilayer Grown on GaAs Substrate by MOCVD through Interfacial Misfit Dislocations Array. Journal of Materials Science & Technology, 2012. 28(2): p. 132-136.
[3]. Rogalski, A., Infrared detectors: status and trends. Progress in Quantum Electronics, 2003. 27(2–3): p. 59-210.
[4]. Kang, J.U., et al. A high-speed photodetector based on He-plasma assisted MBE grown InGaAsP. in Lasers and Electro-Optics, 1999. CLEO '99. Summaries of Papers Presented at the Conference on. 1999.
[5]. Fastenau, J.M., et al., Sb-based IR photodetector epiwafers on 100mm GaSb substrates manufactured by MBE. Infrared Physics & Technology, 2013. 59: p. 158-162.
[6]. Vurgaftman, I., J.R. Meyer, and L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 2001. 89(11): p. 5815-5875.
[7]. A, H.W., Electronic Structure and Properties of Solids. (Freeman), 1980.
[8]. M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters. (World Scientific), 1996. 1: p. 125-146.
[9]. T.L Ngai, R.C.S. and Y.A. Chang, The Ga-Sb (Gallium-Antimony) System. Bulletin of Alloy Phase Diagrams, 1988. 9: p. 586-591.
[10]. Madiomanana, K., et al., Silicon surface preparation for III-V molecular beam epitaxy. Journal of Crystal Growth, 2015. 413: p. 17-24.
[11]. Andrew, L., L. Huiyun, and S. Alwyn, Semiconductor III–V lasers monolithically grown on Si substrates. Semiconductor Science and Technology, 2013. 28(1): p. 015027.
[12]. Anders, S., et al., Room-temperature operation of electrically pumped quantum-cascade microcylinder lasers. Applied Physics Letters, 2002. 80(22): p. 4094-4096.
[13]. Bahri M., et al., Structural characterization of GaSb-based heterostructures grown on Si. ANR, 2012.
[14]. Sze, S.M., Physics of Semiconductor Devices. Wiley, 1981.
[15]. S. Wolf and R. Tauber, Silicon Processing for the VLSI Era. Lattice Press, 1986.
[16]. Ze Yuan, et al., Optimal Device Architecture and Hetero-Integration Scheme for III-V CMOS. VLSI, 2013: p. T54-T55.
[17]. Liu, Y., M.D. Deal, and J.D. Plummer, High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates. Applied Physics Letters, 2004. 84(14): p. 2563-2565.
[18]. Chen, S., Design and process for three-dimensional heterogeneous integration, J.L. Plummer, P.B. Griffin, and Y. Nishi, Editors. 2010. p. 57-61.
[19]. Woelk, C. and K.W. Benz, Gallium antimonide LPE growth from Ga-rich and Sh-rich solutions. Journal of Crystal Growth, 1974. 27: p. 177-182.
[20]. Davies R H, et al., MTDATA - Thermodynamics and Phase Equilibrium Software from the National Physical Laboratory. UK, 2002: p. 229-271.
[21]. .
[22]. .
[23]. <利用快速熱熔再結晶法製作金半金結構之面收型鍺紅外光光子偵測器於矽基板上.pdf>.
[24]. Berger, P.R., MSM photodiodes. IEEE Potentials, 1996. 15(2): p. 25-29.
[25]. Sridaran, S., A. Chavan, and P.S. Dutta, Fabrication and passivation of GaSb photodiodes. Journal of Crystal Growth, 2008. 310(7–9): p. 1590-1594.
[26]. Hao, J., et al., Back-Illuminated GaN Metal-Semiconductor-Metal UV Photodetector with High Internal Gain. Japanese Journal of Applied Physics, 2001. 40(5B): p. L505.
[27]. Carrano, J.C., et al., Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN. Journal of Applied Physics, 1998. 83(11): p. 6148-6160.
[28]. Carrano, J.C., et al., Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors. Applied Physics Letters, 1998. 72(5): p. 542-544.
[29]. optoelectronics and photonics principle and practices. S.O.Kasap
[30]. Katz, O., et al., Gain mechanism in GaN Schottky ultraviolet detectors. Applied Physics Letters, 2001. 79(10): p. 1417-1419.
[31]. Dirk, T., et al., Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides. Japanese Journal of Applied Physics, 2006. 45(8R): p. 6071.
[32]. .
[33]. Tseng, C.-K., et al., A self-assembled microbonded germanium/silicon heterojunction photodiode for 25 Gb/s high-speed optical interconnects. Scientific Reports, 2013. 3: p. 3225.
[34]. Santana, G., et al., Photoluminescence Study of Gallium Nitride Thin Films Obtained by Infrared Close Space Vapor Transport. Materials, 2013. 6(3).
[35]. Lee, J.L., et al., Impurity effect on the creation of Ga vacancies in a Si‐doped layer grown on Be‐doped GaAs by molecular‐beam epitaxy. Journal of Applied Physics, 1990. 68(11): p. 5571-5575.
[36]. Kujala, J., et al., Native point defects in GaSb. Journal of Applied Physics, 2014. 116(14): p. 143508.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *