帳號:guest(18.119.113.116)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘大綱
作者(外文):Pan, Ta-Kang
論文名稱(中文):混沌脈衝訊號經由摻鉺光纖主從式雷射增益系統放大特性研究
論文名稱(外文):Characterization of erbium-doped fiber master oscillator power amplifier for pulsed chaos amplification
指導教授(中文):林凡異
指導教授(外文):Lin, Fan-Yi
口試委員(中文):馮開明
阮于珊
口試委員(外文):Feng, Kai-Ming
Juan, Yu-Shan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:104066523
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:54
中文關鍵詞:混沌脈衝光纖主從式雷射增益系統
外文關鍵詞:ChaosPulseMOPA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:980
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本論文主要目的在於如何有效提高脈衝訊號的尖峰功率,並且明確的定義出適當的脈衝參數區間,使脈衝訊號不受到波形失真及能量損耗影響,並探討混沌脈衝相對於方波脈衝應用於主從式雷射增系統的優勢。實驗結果中,藉由觀察脈衝時域訊號及理想峰值功率差值,可發現在本實驗區間中,放大自發性輻射於脈衝關閉後約150 μs達到飽和,因此需將脈衝關閉時間縮短至小於150 μs,才能夠有效減少能量損耗,並且必須縮短至大約5 μs,才能夠幾乎不受能量損耗,與預想尖峰功率相符。而藉由脈衝寬度比值、互相關函數運算,可知當脈衝重複率達到5 kHz以上,放大器前後脈衝寬度比值皆非常接近於1,並且相關峰值達到0.9以上,可說明此時受波形失真程度影響較小;而藉由校正後脈衝峰值功率差值,而當脈衝重複率達到 20 kHz 以上,實際量測之峰值功率才能夠符合校正後的預期尖峰功率,代表脈衝訊號幾乎完全不受波形失真影響。由以上實驗結果將可定義出能夠不受波形失真且能夠有效利用能量的脈衝參數區間。而混沌脈衝與方波脈衝的比較中,方波脈衝將會引發受激布里淵散射效應,但由於混沌脈衝具有較寬的光譜線寬,因此較能夠提升光纖放大器中的受激布里淵散射閥值,達到抑制的效果,並且其混亂不重複的編碼調制訊號,將能夠提升光達系統的抗干擾能力。
The aim of our study is generating high peak power pulse by MOPA system. Due to the parameter of pulse input to MOPA system will make pulse distortion and ASE power loss, so we have to define the pulse parameter boundary to suppress these unwanted effect. According to the time domain signal and relative power ratio between measured peak power and ideal peak power, ASE power loss can be effectively suppressed when pulse off time shorter than 150 μs, however, only when pulse off time shorten to less than 5 μs, measured peak power is able to achieve ideal peak power. To prevent pulse waveform distortion effect, pulse repetition rate must be increased. When pulse repetition rate achieve 5 kHz, pulse width ratio is almost be 1 and cross correlation peak is higher than 0.9 between MOPA system input and output signal, but the relative power ratio between measured peak power and ideal peak power with ASE power loss calibrated is almost 0 dB when pulse repetition rate higher than 20 kHz, so pulse waveform distortion can be suppressed when pulse repetition rate higher than 20 kHz. Based on these experimental result, we can define the pulse parameter region without pulse distortion and ASE power loss. The comparison between chaos pulse and square wave pulse, the obviously difference is stimulated Brillouin scattering (SBS) effect, but benefit to the broadband linewidth of chaos signal can avoid chaos pulse suffer from fiber amplifier's SBS effect, and because the random, non-repeatable characteristic of chaos signal, chaos pulse is applicable to lidar system for anti-interference.

致謝
摘要
Abstract
目錄
圖目錄
表目錄
Chapter 1 緒論............1
Chapter 2 理論模型............3
2.1 主從式雷射光纖增益系統基本架構............4
2.2 光纖放大器原理簡述............5
2.3 脈衝主從式增益系統............8
2.4 光回饋系統與非線性動態行為............11
Chapter 3 脈衝光源主從式雷射增益系統............15
3.1 實驗架構............16
3.2 不同脈衝條件下波形失真情況............18
3.3 不同脈衝條件下脈衝尖峰功率變化............26
3.4 不同脈衝條件下互相關函數運算............40
3.5 綜合討論............43
3.6 本實驗室研究特點及對本實驗光達系統之提升............46
Chapter 4 結論與未來展望............48
4.1 結論............48
4.2 未來展望............50
[1] B. Schwarz, LIDAR: Mapping the world in 3D , Nat. Photonics, vol. 4, pp. 429 - 430, 2010.
[2] T. Taipalus and J. Ahtiainen, Human detection and tracking with knee-high mobile 2D LIDAR, in IEEE Int. Conf. ROBIO, pp. 1672 - 1677. 2011
[3] M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, Laser ranging: a critical review of usual techniques for distance measurement, Opt. Eng., vol. 40,no. 1, pp. 10 - 19, 2001
[4] G. Kim, J. Eom, and Y. Park, Investigation on the occurrence of mutual interference between pulsed terrestrial LIDAR scanners, in IEEE Intelligent Vehicles Symp. (IV), pp. 437 - 444, 2015.
[5] X. Ai, R. Nock, N. Dahnoun, and J. G. Rarity,High resolution random-modulation cw lidar, Appl. Opt., vol. 50, no. 22, pp. 4478 - 4488, 2011.
[6] X. Ai et al., Pseudo-random single photon counting for space-borne atmospheric sensing applications, in IEEE Aerosp. Conf., pp. 1 - 10. 2014.
[7] W. T. Wu, Y. H. Liao, and F. Y. Lin Noise suppressions in synchronized chaos lidars, Opt. Express, vol. 18, no.25, pp. 26155 - 26162, 2010.
[8] F. Y. Lin and J. M. Liu, Chaotic Radar Using Nonlinear Laser Dynamics, IEEE J. Quantum Electron., vol. 40, no.6, pp.815 - 820, 2004.
[9] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia- Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial bre-optic links", Nature, Vol. 438, no. 17, pp.
343 - 346, 2005.
[10] Y. C. Wang, B.J. Wang and A.B. Wang,"Chaotic correlation optical time domain reflectometer utilizing laser diode," IEEE Photonics Technol. Lett. Vol. 20, no. 19, pp. 1636 - 1638, 2008
[11] A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, "Fast physical random bit generation with chaotic semiconductor lasers", Nat. Photonics, vol 2, pp. 728 - 732, 2008.
[12] F. Y. Lin and J. M. Liu, Chaotic Lidar, IEEE J. Sel. Top. Quantum Electron., Vol. 10, no. 5 , pp. 991 - 997, 2004.
[13] M. Michalska and J. Swiderski, Highly ecient, kW peak power, 1.55 m all- ber MOPA system with a di raction-limited laser output beam, Appl. Phys. B, vol. 117, pp. 841-846, 2014.
[14] M. N. Zervas and C. A. Codemard, High power ber lasers: a review, IEEE J. Quantum Electron., vol. 20, no. 5, pp. 219 - 241, 2004.
[15] K. Kuroda, and Y. YOshikuni, Recovery of population inversion in an erbiumdoped ber ampli er observer by temporally resolving ampli ed spontaneous emissions, Appl. Opt., vol. 51, no. 16, pp. 3670 - 3674, 2012.
[16] A. Malinowski, K. T. Vu, K. K. Chen, J. Nilsson, Y. Jeong, S, Alam, D. Lin and D. Richardson High power pulsed ber MOPA system incorporating electro-optic modulator based adaptive pulse shaping, Opt. Express, vol. 17, no. 23, pp. 20927 - 20937, 2009.
[17] M. Nie, Q. Liu, E. Ji, X. Cao and X. Fu, Temporally programmable hybrid MOPA laser with arbitrary pulse shape and frequency doubling, Appl. Sci., vol. 7, pp. 892 - 901, 2017.
[18] X. Fu, S. C. Chan, Q. Liu and Kenneth K. Y. Wong, Broadband optical chaos for stimulated Brillouin scattering suppression in power over ber, Appl. Opt., vol. 51, no. 16, pp. 3670 - 3674, 2012.
[19] K. shimizu, T. Horiguchi, and Y. Koyamada, Coherent lightwave ampli cation and stimulated Brillouin scattering in an erbium-doped ber ampli er, IEEE Photon. Technol. Lett., vol. 4, no. 6, pp. 564 - 567, 1992.
[20] R. Lang and K. Kobayashi, External optical feedback e ects on semiconductor injection laser properties, IEEE J. Quantum Electron., Vo. 16, no. 3, pp. 347 - 355, 1980.
[21] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, Period-doubling cascades and chaos in a semiconductor laser with optical injection, Phys. Rev. A: At. Mol. Opt. Phys., Vol. 51, no. 5 , pp. 4181 - 4185, 1995.
[22] T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, Nonlinear dynamics induced by external optical injection in semiconductor lasers, J. Opt. B: Quantum Semiclassical Opt., Vol. 9, no. 5, pp. 765 - 784, 1997.
[23] F.Y.Lin.and J.M.Liu Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback, Opt. Communications Vol. 221, no. 1 - 3, pp. 3670 - 3674, 2003
[24] C. H. Cheng, C. Y. Chen, J. D. Chen, D. k. Pan, K. T. Ting and F. Y. Lin, "3D pulsed chaos lidar system," Optics Express, vol.26, no. 9, pp. 1743 - 1751, 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *