帳號:guest(13.59.232.32)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林坤松
作者(外文):Lin, Kung-Sung
論文名稱(中文):戶外端雷射共振腔和麥克森干涉儀之多防區光纖入侵感測系統
論文名稱(外文):Fiber-Optic Multi-Defense-Area Perimeter Intrusion Detection System With Laser Cavity and Michelson Interferometer Configured in Each Defensed Area
指導教授(中文):王立康
指導教授(外文):Wang, Li-Karn
口試委員(中文):馮開明
劉文豐
口試委員(外文):Feng, Kai-Ming
Liu, Wen-Fung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:104066517
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:99
中文關鍵詞:光纖感測麥克森干涉儀周界安防防區多波長雷射
外文關鍵詞:FiberSensorPerimeterIntrusionMichelson
相關次數:
  • 推薦推薦:0
  • 點閱點閱:171
  • 評分評分:*****
  • 下載下載:18
  • 收藏收藏:0
本論文以麥克森干涉儀為感測基礎,設計一光纖式感測儀,可應用於邊界防禦系統,其中透過DWDM將不同防區的雷射分為多個特定波長,分別可以對應於數個防區系統,以利於增加防禦系統範圍,另外在此架構中,並不需要先行架構好龐大的多波長雷射系統再進入感測端,而是可以將分波長動作在個別防區架構中完成,本文中,我們先選擇了四個波長製作四個防區,其中三個波長相近,而另外一個波長相對於其於三個波長較遠,分別測試其在室內以及戶外的表現,另外除了單一防區感測表現外,也測試了其他防區對某防區的影響;配合電腦軟體界面,隨時監控各個防區是否有遭到入侵跡象,並且於室內以及戶外不同環境下分別決定判斷門檻值(Threshold),再以不同入侵方式測試各防區之干涉效果以及是否會互相干擾,以達到最低誤報率之效果。
In this paper, we propose a perimeter intrusion detection system which uses Michelson interferometers. This system has four defense zone and each zone employs a specified wavelength to detect intrusion. The goal of this paper is trying to find the thresholds at different weathers and situations. We preset three thresholds to decide whether the disturbance is intrusion or not. When the disturbance occurs and the detected signal meets the conditions for intrusion, the proposed algorithm triggers an alarm. In other words, if we want to reduce false alarm rate effectively, we just need to preset the right thresholds at first.
第一章 序論.....1
1.1 研究背景.....1
1.2 研究動機.....1
1.3 文獻回顧.....3
1.3.1 光時域反射儀.....3
1.3.2 桑克干涉儀.....4
1.3.3 混合式干涉儀.....6
1.4 論文架構.....9

第二章 原理與介紹.....10
2.1 光纖(Optical Fiber).....10
2.2 光纖耦合器(Fiber Coupler).....11
2.3 摻鉺光纖放大器(Erbium-doped Fiber Amplifier, EDFA).....13
2.4 光纖接續.....16
2.5 麥克森干涉儀(Michelson Interferometer).....17
2.6 入侵判斷.....19
2.6.1 準位跨越門檻值(Level-Crossing Threshold).....19
2.6.2 電壓門檻值(Voltage Thershold).....19
2.6.3 頻率比例門檻值(Frequency Ratio Threshold).....20

第三章 實驗架構.....21
3.1 雷射光源與波長選定.....22
3.2 摻鉺光纖長度選用.....24
3.3 其餘實驗元件介紹.....26
3.3.1 光纖耦合器(Fiber Coupler).....26
3.3.2光纖環形反射鏡(Fiber Loop Mirror).....26
3.3.3密集分波多工器(Dense Wavelength Division Multiplexer, DWDM).....26
3.3.4鎧裝光纖光纜(Armor Fiber Cable).....27
3.3.5光偵測器(Power Detecter, PD).....27
3.3.6數據採集(Data Acquisition, DAQ).....27
3.3.7麥克森干涉儀(Michelson Interferometer).....28
3.3.8入侵方式.....28

第四章 實驗結果與分析.....30
4.1 雷射表現.....30
4.2 戶外測試.....32
4.2.1 晴天測試-門檻值選定.....32
4.2.2 小雨測試-門檻值選定(24小時達71毫米).....38
4.2.3 大雨測試-門檻選定(24小時達168毫米).....43
4.2.4 人工豪雨測試-門檻值選定(24小時超過800毫米,中央氣象局定義超大豪雨).....48
4.2.5 各種氣候下比較.....53
4.2.6 防區間互相干擾.....76
4.2.7 入侵結果.....82
4.3 室內測試.....89
4.3.1 門檻值設定.....89
4.3.2 入侵測試.....92

第五章 結論.....94
參考文獻.....95

[1] P. V. Mamyshev, S. V. CHernikov, and E. M. Dianov, ”Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE Journal of Quantum Electronics, Vol.27, No. 10, pp.2347-2355, 1991.
[2] T Okoshi, ”Recent advances in coherent optical fiber communication systems,” IEEE Journal of Lightwave Technology, Vol. LT-5, No. 1, pp.44-52, 1987.
[3] J. E. Antonio-Lopez, Z. S. Eznaveh, P. L. Wa, A. Schülzgen, and R. A. Correa, ”Multicore fiber sensor for high-temperature applications up to 1000°C,” Optics Letters, Vol. 39, No. 15, pp.4309-4312, 2014.
[4] Y. Zhang, X. Tian, L. Xue, Q. Zhang, L. Yang, and B. Zhu, ” Super-high sensitivity of fiber temperature sensor based on leaky-mode bent SMS structure,” IEEE Photonics Technology Letters, Vol. 25, No. 6, pp.560-563, 2013.
[5] H. Gong, X. Yang, K. Ni, C. Zhao, and X. Dong, ”An optical fiber curvature sensor based on two peanut-shape structures modal interferometer,” IEEE Photonics Technology Letters, Vol. 26, No. 1, pp.22-24, 2014.
[6] H. K. Singh, T. Basumatary., D. Chetia, and T. Bezboruah, ” Fiber optic sensor for liquid volume measurement,” IEEE Sensors Journal, Vol. 14, No. 4, pp.935-936, 2014.
[7] B Lee, ” Review of the present status of optical fiber sensors,” Optical Fiber Technology, Vol.9, Issue 2, pp.57-79, 2003.
[8] T. G. Giallorenzi , J. A. Bucaro , A. Dandridge , G. H. Sigel, J. H. Cole, S. C. Rashleigh, And R. G. Priest , ” Optical fiber sensor technology,” IEEE Transactions On Microwave Theory And Techniques, Vol. MTT-30, No. 4, pp.626-665, 1982.
[9] J. C. Juarez , Eric W. Maier, K. N. Choi , and H. F. Taylor , ” Distributed fiber-optic intrusion sensor system,” IEEE Journal of Lightwave Technology, Vol. 23, No. 6, pp.2081-2087, 2005.
[10] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, ” Fiber grating sensors,” IEEE Journal of Lightwave Technology, Vol. 15, No. 8, pp.1442-1463, 1997.
[11] A. Othonos, ” Fiber bragg gratings,” Review of scientific instruments, Vol. 68, No. 12, pp.4309-4341, 1997.
[12] P. C. Peng, H. Y. Tseng, and S. Chi, ” Long-distance FBG sensor system using a linear-cavity fiber raman laser scheme,” IEEE Photonics Technology Letters, Vol. 16, No. 2, pp.575-577, 2004.
[13] Li Q. , Wang H. , Li L. , Liang S. , Zhong X. , ” Fiber-optic sensor based on michelson interferometers for distributed disturbance detection,” Infrared and Laser Engineering, Vol. 44, No. 1, pp.205-209, 2015.
[14] R. Kashyap, and B. K. Nayar, ” An all single-mode fiber michelson interferometer sensor,” IEEE Journal of Lightwave Technology, Vol. LT-1, No. 4, pp.619-624, 1983.
[15] J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu,Z. Li, G. Wang, X. Zhong, J. Zhao,” Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sensors and Actuators B: Chemical, Vol. 208, pp. 315-319, 2015.
[16] M. Corke, A. D. Kersey, D. A. Jackson, J. D. C. Jones,” All-fibre 'michelson' thermometer,” IEEE Electric Letters, Vol. 19, No. 13, pp. 471-473, 1983.
[17] G. Luo, C. Zhang, L. Li, Z. Ma, T. Lan, C. Li, W. Lin, ” Distributed fiber optic perturbation locating sensor based on dual Mach-Zehnder interferometer,” International Symposium on Photoelectronic Detection and Imaging 2007, pp. 66220z-1 - 66220z-7, 2008.
[18] N. M. S. Jahed, T. Nurmohammadi , S. Ounie , R. S. Bonabi , ” Enhanced resolution fiber optic strain sensor based on Mach-Zehnder interferometer and displacement sensing principles,” IEEE Electrical and Electronics Engineering, Vol. 10, pp.302-306, 2009.
[19] W. Xu, C. Zhang, S. Liang, L. Li, W. Lin, and Y. Yang, ” Fiber-optic distributed sensor based on a Sagnac interferometer with a time delay loop for detecting timevarying disturbance,” Microwave and Optical Technology Letters, Vol. 51, Issue 11, pp. 2564-2567, 2009.
[20] X. Fang, ” A variable-Loop Sagnac interferometer for distributed impact sensing,” IEEE Journal of Lightwave Technology, Vol. 14, No. 10, pp. 2250-2254, 1996.
[21] Q. Zhu, W. Ye, ” Distributed fiber-optic sensing using double-loop Sagnac interferometer,” IEEE 9th Conference on Industrial Electronics and Applications (ICIEA), pp.499-503, 2014.
[22] A. A. Chtcherbakov, P. L. Swart, and S. J. Spammer, ” Mach–Zehnder and modified Sagnac-distributed fiber-optic impact sensor,” Applied Optics, Vol. 37, Issue 16, pp. 3432-3437, 1998.
[23] A. A. Chtcherbakov, P. L. Swart, S. J. Spammer and B. M. Lacquet, ” Modified Sagnac/Mach-Zehnder interferometer for distributed disturbance sensing,” Microwave and Optical Technology Letters, Vol. 20, Issue 1, pp. 34-36, 1999.
[24] S. J. Spammer, P. L. Swart, and A. C. Anatoli , ” Merged Sagnac–Michelson interferometer for distributed disturbance detection,” IEEE Journal of Lightwave Technology, Vol. 15, No. 6, pp. 972-976, 1997.
[25] Y. Lu, T. Zhu, L. Chen, and X. Bao, ” Distributed vibration sensor based on coherent detection of phase-OTDR,” IEEE Journal of Lightwave Technology, Vol. 28, Issue 22, pp. 3243-3249, 2010.
[26] J. Gao, Z. Jiang, Y. Zhao, L. Zhu, and G. Zhao, ” Full distributed fiber optical sensor for intrusion detection in application to buried pipelines,” Chinese Optics Letters, Vol. 3, No. 11, pp. 633-635, 2005.
[27] Z. Qin, T. Zhu, L. Chen, and X. Bao, ” High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technology Letters, Vol. 23, No. 15, pp. 1091-1093, 2011.
[28] W. Ye, Q. Zhu, T. You, "Developments in distributed optical fiber detection technology," SPIE, Vol. 9297, pp. 92972T-1~92972T-9, 2014.
[29] J.C. Juarez, E.W. Maier, K. N. Choi, H.F. Taylor, "Distributed fiber-optic intrusion sensor system," IEEE Journal of Lightwave Technology, Vol. 23,No. 6, pp. 2081-2087, 2005.
[30] S. Hornung, S. Cassidy, P. Yennadhiou, M. Reeve, "The blown fiber cable," IEEE Journal On Selected Areas In Communications, Vol. SAC-4,No. 5, pp. 679-685, 1986.
[31] G. Georgiou, B.Sc, M.Sc, D.I.C., and A.C. Boucouvalas, B.Sc, M.Sc, Ph.D, "Low-loss single-mode optical couplers," IEEE Proceedings, Vol. 132,Pt. J, No. 5, pp. 297-302, 1985.
[32] J.R. Cozens, A.C. Boucouvalas, "Coaxial optical coupler," IEEE Electronics Letters, Vol. 18, No. 3, pp. 138-140, 1982.
[33] P. P. Miao, U. Y. Zhu, J. Wang, X. C. Tao, X. T. Yao, "The simulation and experimental study of drawing process of fused fiber coupler," 光子學報, Vol. 44, No. 9, pp. TN253, 2015.
[34] D.B. Mortimore, "Fiber loop reflectors," IEEE Journal of Lightwave Technology, Vol. 6, No. 7, pp. 1217-1224, 1988.
[35] P. Urquhart, "Fiber lasers with loop reflectors," Applied Optics, Vol. 28, No. 17, pp. 3759-3767, 1989.
[36] Y. Sun, J. L. Zyskind, and A. K. Srivastava, "Average inversion level, modeling, and physics of erbium-doped fiber amplifiers," IEEE Journal of Selected Topics In Quantum Electronics, Vol. 3, No. 4, pp. 991-1007, 1997.
[37] D. B. M. Farah, and S. Abu, "EDFA gain optimization for WDM system," Elektrika, Vol. 11, No. 2, pp. 34-37, 2009.
[38] P. M. Becker, A. A. Olsson, JR. Simpson, "Erbium-doped fiber amplifiers: fundamentals and technology," Academic Press, 1999.
[39] C. R. Giles, and E. Desurvire, "Modeling erbium-doped fiber amplifiers," IEEE Journal of Lightwave Technology, Vol. 9, No. 2, pp. 271-283, 1991.
[40] P. K. Cheo, A. Liu, and G. G. King, "A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array," IEEE Photonics Technology Letters, Vol. 13, No. 5, pp. 439-441, 2001.
[41] S. Bielawski, D. Derozier, and P. Glorieux, "Antiphase dynamics and polarization effects in the Nd-doped fiber laser," Physical Review A, Vol. 46, No. 5, pp. 2811-2822, 1992.
[42] E. B. Brett, E. N. Lynn, J. T. Guillermo, J. J. David, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er-and Tm-doped fiber sources," Journal of Biomedical Optics, Vol. 3, No. 1, pp. 76-79, 1998.
[43] K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, G.H. Sigel Jr. , "Pr3+-doped Ge-Ga-S glasses for 1.3 μm optical fiber amplifiers," Journal of Non-Crystalline Solids, Vol. 182, No. 3, pp. 257-261, 1995.
[44] P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter , "Tm-doped fiber lasers: fundamentals and power scaling," IEEE Journal of Selected Topics In Quantum Electrics, Vol. 15, No. 1, pp. 85-92, 2009.
[45] T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, "Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 pm," IEEE Journal of Quantum Electrics, Vol. 31, No. 11, pp. 1880-1889, 1995.
[46] R. Paschotta, J. Nilsson, A.C. Tropper, D.C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE Journal of Quantum Electrics, Vol. 33, No. 7, pp. 1049-1056, 1997.
[47] G. Martin, N. Thibault, and R. Martin, "Model of the amplified spontaneous emission generation in thulium-doped silica fibers," Journal of the Optical Society of America B, Vol. 29, No. 10, pp. 2886-2890, 2012.
[48] S. Li, K.S. Chiang, W. A. Gambling, "Gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror," IEEE Photonics Technology Letters, Vol. 13, No. 9, pp. 942-944, 2001.
[49] I. Sohn, J. Song, "Gain flattened and improved double-pass two-stage EDFA using microbending long-period fiber gratings," Optics Communications, Vol. 236, No. 1-3, pp. 141-144, 2004.
[50] Y. Zhu, P. Shum, C. Lu, B. M. Lacquet, P. L. Swart, S. J. Spammer, "EDFA gain flattening using phase-shifted long-period grating," Microwave And Optical Technology Letters, Vol. 37, No. 220, pp. 153-157, 2003.
[51] S. Mondal, Long reach RSOA based passive optical networks, LAP LAMBERT Academic, 2014.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *