|
[1] B. P. Abbott, et al. Observation of Gravitational Waves from a Binary Black Hole Merger. PRL 116, 061102, 2016. [2] I. W. Martin, Studies of materials for use in future interferometric gravitational wave detectors, PhD thesis, University of Glasgow(2009) [3] LIGO Scientific Collaboration Group. Instrument science white paper. Oct. 2016, LIGO-T15TBI-v1 [4] H. B. Callen, T. A. Weltont. Irreversibility and generalized noise. Phys. Rev., Jul. 1951, 83: 34-40 [5] R. F. Greene, H. B. Callen. On the formalism of thermodynamic fluctuation theory. Phys. Rev., Sep. 1951, 83: 1231-1235 [6] H. B. Callen, R. F. Greene. On a theorem of irreversible thermodynamics. Phys. Rev., Jun. 1952, 86: 702-710 [7] G. Sasso, Cryogenic Q-measurements on silicon, presentation at Friedrich Schiller University Jena (2006) [8] Y. H. Juang. Stress effect on mechanical loss of the SiNx film deposited with PECVD method on silicon cantilever and setup for the loss measurement improvement. Master thesis, National Tsing Hua University, Aug. 2014 [9] Xiao Liu et al. Elastic Properties of Several Silicon Nitride Films. Mater. Res. Soc. Symp. Proc. Vol. 989, 2007 [10] C. W. Lee. Study of the material properties and the mechanical loss of the silicon nitride films deposited by PECVD method on silicon cantilever for laser interference gravitational wave detector application. Master thesis, National Tsing Hua University, Aug. 2013 [11] W. Y. Wang. Study of mechanical vibration and loss of silicon cantilever for development of the high-reflection mirror in the laser interference gravitational wave detector. Master thesis, National Tsing Hua University, Aug. 2013 [12] D. L. Smith, A. S. Alimonda, C. C. Chen, et al. Mechanism of SiNxHy deposition from NH3-SiH4 plasma. J. Electrochem. Soc., Feb. 1990, 137: 614-623 [13] J. N. Chiang, D. W. Hess. Mechanistic considerations in the plasma deposition of silicon nitride films. J. Electrochem. Soc., Jul. 1990, 137: 2222-2226 [14] Sami Franssila. Introduction to Microfabrication. John Wiley & Sons, 2004, Ch5.5:51-53, ISBN: 978-0-470-85106-7 [15] D. R. M. Crooks, Mechanical loss and its significance in test mass mirrors of gravitational wave detectors, Ph.D. thesis, University of Glasgow (2002) [16] X. Liu, R. O. Pohl. Low-energy excitations in amorphous films of silicon and germanium. Phys. Rev. B, Oct. 1998, 58: 9067-9081 [17] B. E. W. Jr., R. O. Pohl. Thin films: stresses and mechanical properties V: Elastic properties of thin films. Mater. Res. Soc., Pittsburgh, Jun. 1995, No.356: 567-572, ISBN: 978-1-558-99257-3 [18] H. C. Tsai, W. Fang. Determining the Poisson's ratio of thin film materials using resonant method. Sensors and Actuators A, 2003, 103: 377-383 [19] Z. Z. Xie. Study of the optical-mechanical properties of amorphous silicon and silicon dioxide fabricated by Plasma Enhance Chemical Vapor Deposition (PECVD). Master thesis, National Tsing Hua University, Apr. 2015 [20] M. A. Hopcroft, W. D. Nix, T. W. Kenny. What is the Young’s modulus of silicon? Journal of Microelectromechanical system, Apr. 2010, 19: 229 [21] T. Y. Zhang, Y. J. Su, C. F. Qian, et al. Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta mater., Mar. 2000, 48: 2843-2857 [22] B. A. Walmsley, Y. Liu, X. Z. Hu, et al. Poisson’s ratio of low-temperature pecvd silicon nitride thin films. J. Microelectromechanical Syst., Jun. 2007, 16: 622-627 [23] V. Ziebart, O. Paul, U. Munch, et al. Thin-Films: stresses and mechanical properties VII: A novel method to measure Poisson’s ratio of thin films. Cambridge University Press, 1998, 27-32, ISBN: 978-1-107-41330-6 [24] C. L. Dai. A resonant method for determining mechanical properties of Si3N4 and SiO2 thin films. Materials Letters, Jun. 2007, 61: 3089-3092 [25] J. J. Wortman and R. A. Evans. Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium. J. Appl. Phys. 36, 153 (1965) [26] Chun Cheng. Cryogenic mechanical loss measurement system setup and annealing effect on the mechanical loss of the nano-layer coatings. Master thesis, National Tsing Hua University, 2015 [27] Meng-Yun Wu. Room Temperature Mechanical Loss of SiN0.40/SiO2 Quarter-wave Stacks Deposited by Plasma Enhanced Chemical Vapor Deposition Method. Master thesis, National Tsing Hua University, 2016 [28] Ling-chi Kuo, Huang-wei Pan et al. Errors on the Cryogenic Mechanical Loss Measurement in Cantilever Ring-down Method, LVC meeting, Glasgow, 2017, LIGO Document: LIGO-G1700301 [29] I Martin et al. Measurements of a low-temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2. Class. Quantum Grav. 25 (2008) [30] R.J. Bruls et al. The temperature dependence of the Young's modulus of MgSiN2, AlN and Si3N4. Journal of the European Ceramic Society 21, 2001 [31] A. Nowick, B. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York, 1972 [32] V. B. Braginsky, V. P. Mitrofanov, V. I. Panov, Systems with small dissipation, University of Chicago Press, Chicago, 1985. [33] W. A. Phillips, Tunneling states in amorphous solids, Journal of Low Temperature Physics 7 (1972) 351–360. [34] P. W. Anderson, Anomalous low-temperature thermal properties of glasses and spin glasses, Philosophical Magazine 25 (1972) 1–9. [35] K. S. Gilroy, W. A. Phillips, An asymmetric double-well potential model for structural relaxation processes in amorphous materials, Philosophical Magazine B 43 (1981) 735–746. [36] O. L. Anderson, H. E. Bommel, Ultrasonic absorption in fused silica at low temperatures and high frequencies, Journal of the American Ceramic Society 38 (1955) 125–131. [37] D. J. McLachlan, L. L. Chamberlain, Atomic vibrations and melting point in metals, Acta Metallurgica 12 (1964) 571–576. [38] R. E. Strakna, Investigation of low temperature ultrasonic absorption in fast-neutron irradiated SiO2 glass, Physical Review 123 (1961) 2020–2026. [39] H. W. Pan et al. "Silicon nitride films fabricated by plasma enhanced chemical vapor deposition method for coatings of the laser interferometric gravitational waves detector" In preparation (2017) LIGO document number LIGO-P1700252-v2 [40] Paul B. Woller. The Conformational Analysis of n-Butane. Journal of the American Chemical Society, 1972 [41] Norman L. Allinger. Conformational Analysis. 130. MM2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms. Journal of the american chemical society, 1977 https://openwetware.org/wiki/Todd:Chem3x11_ToddL1?ref=vidupdatez.com/ [42] Hsuan-Yu Ho. Annealing effect on the room temperature and cryogenic mechanical loss of ion beam sputtered nano-layer coatings. Master thesis, National Tsing Hua University, oct. 2017 [43] Jessica Steinlechner, Iain W. Martin, Jim Hough, et al. Thermal noise reduction and absorption optimization via multimaterial coatings. Phys. Rev. D 91 (Feb. 2015), 042001 [44] Peter G. Murray et al. Ion-beam sputtered amorphous silicon films for cryogenic precision measurement systems, Phys. Rev. D 92, 062001, 2015 [45] Gregory M. Harry et al. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Class. Quantum Grav. 19, 897–917 , 2002 [46] Nai-chung Kang. Photothermal common-path interferometry system setup and study of the optical absorption of the silicon nitride films deposited by PECVD method. Master thesis, National Tsing Hua University, oct. 2017 [47] Hsin-cheih Chen. Annealing effect on the room temperature mechanical loss of the silicon nitride films deposited with PECVD on silicon cantilever. Master thesis, National Tsing Hua University, oct. 2017
|