帳號:guest(13.58.133.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鐘偉綸
作者(外文):Chung, Wei-Lun
論文名稱(中文):高速馬赫-曾德爾矽光學調變器之傳輸電極的設計及分析
論文名稱(外文):Design and Analysis of the Travelling Wave Electrode for High Speed Silicon Mach-Zehnder Optical Modulators
指導教授(中文):李明昌
指導教授(外文):Lee, Ming-Chang
口試委員(中文):徐碩鴻
馮開明
劉怡君
口試委員(外文):Hsu, Shuo-Hung
Feng, Kai-Ming
Liu, Yi-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:104066515
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:125
中文關鍵詞:矽光子學高速馬赫-曾德爾矽光學調變器四層脈衝振幅調變L型調變區域整合CMOS 驅動器
外文關鍵詞:Silicon PhotonicsHigh speed silicon Mach-Zehnder optical modulatorsPAM-4L-shaped modulation regionIntegrated CMOS driver
相關次數:
  • 推薦推薦:1
  • 點閱點閱:175
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
隨著互聯網之間的數據傳輸量大幅增加、大量資訊的雲端儲存以及提供多媒體及軟體的雲端服務,這導致大量數據傳輸的速度達到前所未有的需求,而比較於電通訊傳輸系統,光通訊傳輸系統具有更低的能量損耗,並且有更快的傳輸速率,為了實現大量傳輸數據的高頻光訊號傳輸系統,設計一個能將電訊號轉成光訊號且低損耗的高速電光調變器將是一個非常重要的目標。
在本論文中,致力於利用傳輸電極的設計與分析,結合L-shape PN junction的調變區域,製作出操作波段為1550 nm的高頻Mach-Zender矽光學調變器,並在不同元件長度、不同佈值濃度、不同MMI的對稱調變器及對稱與非對稱調變器中進行比較,以找出設計MZI光調變器最佳化參數。
其中由1mm長度MZI光調變器的S參數顯示,經由設計後調變頻寬可高達50 GHz(71 Gb/s),並且藉由PAM4調變電訊號驅動2 mm長度的MZI調變器可成功調變25 Gboud(50 Gb/s)資料量的PAM4光訊號,最後整合CMOS driver則可成功調變25 Gb/s的OOK光訊號。
In the past decade, a significant increase in Internet access is driven by an abundance of cloud-based storage and computing, high-definition multimedia streaming, and a lot of Internet services. This has resulted in an unprecedented demand in the speed and volume of data transmission. Compared with the electric transmission system, the optical transmission system has lower power consumption and has higher transmission speed. In order to implement a high-speed optical transmission system, designing a high-speed electro-optical modulator that is able to convert electrical signal into optical signal efficiently is an important target.
In this thesis, we focus on the design and analysis of a travelling wave Si Mach-Zender modulator, where the active region is made of a L-shaped PN junction inside a waveguide for the operating wavelength near 1550 nm. Compared with different element length, different implant concentration, different MMI and the symmetric and asymmetric modulator to optimize the parameters of the MZI optical modulator.
The S parameters show that the modulation bandwidths of a 1mm and a 2 mm MZI modulator are 71Gb/s and 47Gb/s respectively, with an employment of a TWE design. The 2 mm asymmetric MZI optical modulator successfully modulates the 25Gboud (50Gb/s) PAM4 signal driven by electrical PAM4. Finally, the MZI optical modulator packaged with a CMOS driver was successfully demonstrated with a modulation speed of 25Gb/s OOK optical signal.
Abstract I
摘要 II
致謝 III
目錄 V
表目錄 XIII
第一章 緒論 14
1.1 前言 14
1.2 研究動機與目的 15
1.3 論文架構 18
第二章 Mach-Zehnder光調變器的原理及設計 19
2.1 被動光學元件的原理及設計 20
2.1.1 矽光波導(Waveguide) 20
2.1.2 多模干涉耦合器(Multimode interference coupler) 27
2.1.3 光柵耦合器(Grating coupler) 36
2.2 主動光學元件的原理及設計 43
2.2.1 電光效應在光學調變的運用原理及設計 43
2.2.2 熱光效應在光學調變的運用原理及設計 50
2.3 傳輸電極(Travelling wave electrode)的分析及設計 51
2.3.1 分布型等效電路(Distributed circuit model)的分析 51
2.3.2 共面波導(Coplanar waveguide)的介紹 59
2.3.3 阻抗匹配(Impedance match) 60
2.3.4 速度匹配(Velocity match) 63
2.3.5 微波損耗(Microwave loss) 64
2.4 Mach-Zender光調變器的特性及應用 67
2.4.1 對稱(Symmetric)及非對稱(Asymmetric)的MZI調變器 67
2.4.2 單邊驅動(Single drive)及雙邊驅動(Dual drive)的比較 69
2.4.3 Electrical PAM4的特性 71
2.4.4 Optical PAM4的特性及元件設計 72
第三章 元件製作及量測系統 74
3.1 元件製作流程圖 74
3.2 元件製作細節以及重要參數 75
3.3 量測系統的架設 84
3.3.1 直流量測系統的架設 85
3.3.2 高頻量測系統的架設 86
3.3.3 Electrical PAM4的高頻量測系統架設 88
3.3.4 Optical PAM4的高頻量測系統架設 88
第四章 實驗量測與分析 90
4.1 調變區域的量測及分析 90
4.1.1 TLM量測與分析 90
4.1.2 調變區域的特性量測(包含PN junction) 91
4.2 晶片上終端阻抗(On-chip termination)的量測及分析 94
4.3 熱調節器的量測與分析 96
4.4 非對稱MZI調變器消光比對於光訊號操作點的變化 99
4.5 不同參數下直流及高頻光訊號量測的比較 102
4.5.1 1 mm及2 mm長度MZI調變器的S參數分析 102
4.5.2 不同元件長度下直流及高頻光訊號的比較 107
4.5.3 調變區域中不同n佈值濃度下直流及高頻光訊號的比較 109
4.5.4 1×2MMI及2×2MMI對稱MZI調變器直流及高頻光訊號比較 111
4.5.5 對稱及非對稱MZI調變器直流及高頻光訊號比較 114
4.6 PAM4訊號的量測及分析 116
4.6.1 Electrical PAM4 116
4.6.2 Optical PAM4 117
4.7 整合調變器CMOS driver的量測及分析 118
第五章 結果與討論 119
5.1 結論 119
5.2 改善 121
參考文獻 123
[1] Cisco, Cisco global cloud index: Forecast and methodology, 2013-2018. 2014.
[2] Benner, A. Optical interconnect opportunities in supercomputers and high end computing. in OFC/NFOEC. 2012.
[3] Xu, Q., et al., Micrometre-scale silicon electro-optic modulator. Nature, 2005. 435(7040): p. 325-327.
[4] Wang, X., et al. Silicon photonic Bragg grating modulators. in 2014 IEEE Photonics Conference. 2014.
[5] Gu, L., et al. Photonic-Crystal-Waveguide-Based Silicon Mach-Zehnder Modulators. in Integrated Photonics Research and Applications/Nanophotonics. 2006. Uncasville, Connecticut: Optical Society of America.
[6] Gill, D.M., et al., CMOS-Compatible Si-Ring-Assisted Mach–Zehnder Interferometer With Internal Bandwidth Equalization. IEEE Journal of Selected Topics in Quantum Electronics, 2010. 16(1): p. 45-52.
[7] Liu, A., et al., High-speed optical modulation based on carrier depletion in a silicon waveguide. Optics Express, 2007. 15(2): p. 660-668.
[8] Gardes, F.Y., et al., 40 Gb/s silicon photonics modulator for TE and TM polarisations. Optics Express, 2011. 19(12): p. 11804-11814.
[9] Reed, G.T., et al., High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions. Frontiers in Physics, 2014. 2(77).
[10] Jalali, B., et al., Guided-wave optics in silicon-on-insulator technology. IEE Proceedings - Optoelectronics, 1996. 143(5): p. 307-311.
[11] Fischer, U., et al., 0.1 dB/cm waveguide losses in single-mode SOI rib waveguides. IEEE Photonics Technology Letters, 1996. 8(5): p. 647-648.
[12] Okamoto, K., Fundametals of Optical Waveguides 2/E. Academic Press, 2006.
[13] Palik, E., Handbook of Optical Constants of Solids. Academic Press, 1998. .
[14] Byun, K.E., et al. Graphene for metal-semiconductor Ohmic contacts. in 2012 IEEE Nanotechnology Materials and Devices Conference (NMDC2012). 2012.
[15] Vivien, L., et al., Comparison between strip and rib SOI microwaveguides for intra-chip light distribution. Optical Materials, 2005. 27(5): p. 756-762.
[16] Bryngdahl, O., Image formation using self-imaging techniques*. Journal of the Optical Society of America, 1973. 63(4): p. 416-419.
[17] Soldano, L.B. and E.C.M. Pennings, Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 1995. 13(4): p. 615-627.
[18] Bachmann, M., P.A. Besse, and H. Melchior, General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 1994. 33(18): p. 3905-3911.
[19] Loewen, E.G. and E. Popov, Diffraction gratings and applictions. Marcel Dekker Inc, 1997.
[20] Taillaert, D., Grating Couplers as interface between optical fibers and nanophotonic waveguides. Ph.D dissertation, Ghent University, 2004.
[21] Vivien, L., et al., Light injection in SOI microwaveguides using high-efficiency grating couplers. Journal of Lightwave Technology, 2006. 24(10): p. 3810-3815.
[22] Wang, X., Silicon-photonic-waveguide-Bragg-gratings. Ph.D dissertation, The University Of British Columbia, 2013.
[23] Soref, R. and B. Bennett, Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 1987. 23(1): p. 123-129.
[24] Bhattacharya, P., Semiconductor optoelectronic devices. 1994: Prentice-Hall, Inc. 535.
[25] Akiyama, S., et al., Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide. IEEE Journal of Selected Topics in Quantum Electronics, 2013. 19(6): p. 74-84.
[26] Patel, D., et al., High-speed compact silicon photonic Michelson interferometric modulator. Optics Express, 2014. 22(22): p. 26788-26802.
[27] Timurdogan, E., et al. Vertical Junction Silicon Microdisk Modulators at 25Gb/s. in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013. 2013. Anaheim, California: Optical Society of America.
[28] Liow, T.Y., et al., Silicon Optical Interconnect Device Technologies for 40 Gb/s and Beyond. IEEE Journal of Selected Topics in Quantum Electronics, 2013. 19(2): p. 8200312-8200312.
[29] Streshinsky, M., et al., Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm. Optics Express, 2013. 21(25): p. 30350-30357.
[30] Paolo., F.D., Networks and Devices Using Planar Transmissions Lines. Taylor & Francis, 2000.
[31] Ding, R., et al., Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator. Optics Communications, 2014. 321: p. 124-133.
[32] Ding, J., et al., Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration. Optics Express, 2012. 20(3): p. 3209-3218.
[33] Witzens, J., T. Baehr-Jones, and M. Hochberg, Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links. Optics Express, 2010. 18(16): p. 16902-16928.
[34] Banerjee, P., G. Ghosh, and S.K. Biswas, A Simple Method to Determine the Dielectric Constant of Small-Sized Medium-Loss Samples at X-Band Frequencies. International Journal of Electromagnetics and Applications, 2011.
[35] Hasegawa, H., M. Furukawa, and H. Yanai, Properties of Microstrip Line on Si-SiO/sub 2/ System. IEEE Transactions on Microwave Theory and Techniques, 1971. 19(11): p. 869-881.
[36] Jia-Ming, L., Photonic Devices. Cambridge University Press, 2005.
[37] Chen, H., Development of an 80 Gbit/s InP-based Mach-Zehnder Modulator. Ph.D dissertation, Dept. Elect. Eng. Comput. Sci., Technical Univ., 2007: p. 65–66
[38] Walker, R.G., High-speed III-V semiconductor intensity modulators. IEEE Journal of Quantum Electronics, 1991. 27(3): p. 654-667.
[39] Xiong, C., et al. A linear push-pull silicon optical modulator. in Frontiers in Optics 2014. 2014. Tucson, Arizona: Optical Society of America.
[40] Chi, X., et al., Supplement 1: Monolithic 56  Gb/s silicon photonic pulse-amplitude modulation transmitter. 2016.
[41] Tu, X., et al., Silicon optical modulator with shield coplanar waveguide electrodes. Optics Express, 2014. 22(19): p. 23724-23731.
[42]http://na.support.keysight.com/plts/help/WebHelp/Analyzing/Analyzing_Data_using_Eye_Diagrams.html
[43] David, P., Design, Analysis, and Performance of a Silicon Photonic Traveling Wave Mach-Zehnder Modulator. Master dissertation,McGill University, 2014.
[44] Alireza, S., Design, Design and Characterization of 35 GHz Silicon Photonic Travelling Wave Modulator for Next Generation Short Reach Communication Links. Master dissertation, McGill University, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *