帳號:guest(13.58.236.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王嘉珣
作者(外文):Wang, Chia-Hsun
論文名稱(中文):免標定、高品質因子的混雜非對稱超材料共振器
論文名稱(外文):Hybridized asymmetric metamaterial resonator with label free、high Q factor
指導教授(中文):潘犀靈
嚴大任
指導教授(外文):Pan, Ci-Ling
Yen, Ta-Jen
口試委員(中文):張存續
楊尚樺
吳小華
口試委員(外文):Chang, Tsun-Hsu
Yang, Shang-Hua
Wu, Siao-Hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:104066514
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:50
中文關鍵詞:兆赫波免標定高品質因子Fano共振
外文關鍵詞:THzlabel freehigh Q factorFano resonance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:196
  • 評分評分:*****
  • 下載下載:20
  • 收藏收藏:0
在本論文中,我們研究了用於生物醫學應用的共振感測裝置。此元件設計操作於中紅外波長(10um即~30THz),具有靈敏度高及高Q值。用於生物細胞結合於共振器的表面時,頻率會移動,使其可作為即時的、免標定的生物細胞偵測器。
為了製作具有高品質因素的設備作為折射率感測裝置,以提高這種生物傳感元件的解析度,我們提出了一種利用Fano共振之非對稱的光學共振結構設計,該元件由兩組鍍金之方塊組成,每組具有兩組不對方塊,這些方塊之間的間隙增強了元件的靈敏度。 根據模擬結果,我們的設計之品質因子可以高達到1546,而文獻中報導者的只有約80,靈敏度約為2500nm / RIU,比Lahiri、Basudev的工作高兩倍,而品質因素的估計值為383。論文中也報導實驗的初步進展。
In this work, a resonance-based sensing device for biomedical applications, is studied. The device is designed for operation at 10 um (~30 THz) is sensitive and with high Q. When the biological cells are attached to the surface of the resonator-based device, its resonance frequency will shift, making possible and calibration-free, speedy biological cell detection.
We focus on the design of devices with high-quality factor as a refractive index detector in order to improve the resolution of such biological sensing devices. In order to achieve this result, we propose an asymmetric optical resonance structure based on the Fano resonance. The principle of pattern on the device is composed of two groups of bars. Each group have two set of asymmetry bars. The gaps between bars are enhancing element to boost the sensitivities of the device. According to the simulation, our design can reach a quality factor as high as 1546, while previous designs only exhibited Q-factor of 80. The sensitivity is about 2500nm/RIU it is twice times bigger than that of Lahiri and Basudev. The figure of merit estimated to be as 383.
摘要 I
Abstract II
致謝 III
Table of Contents IV
List of Figure VII
List of Table XI
List of Abbreviations XII
Chapter 1 Introduction 1
1.1 Terahertz technology 1
1.1.1 Introduction to terahertz radiation 1
1.1.2 Terahertz time-domain spectroscopy 3
1.1.3 Fourier Transform Infrared Spectroscopy 4
1.2 The Background of Label Technique 5
1.3 Live cell imaging resonators 6
1.3.1 Confocal microscopy 6
1.3.2 Synchrotron based infrared microscopy 7
1.3.3 Surface plasmon resonance microscopy 9
1.4 Motivation and objectives 10
1.5 Organization of this thesis 10
Chapter 2 Theoretical models and analytical methods 12
2.1 Resonator 12
2.1.1 Plasmonic resonators 12
2.1.2 Dielectric resonators 13
2.1.3 Fano resonace 16
2.1.4 High Q-factors 21
2.2 Refractive index sensors 21
2.2.1 Split-ring resonator 21
2.2.2 Asymmetric split ring resonator 24
Chapter 3 Experimental Methods 26
3.1 CST Microwave Studio 26
3.1.1 Finite-Difference Time-Domain 26
3.1.2 Yee Cell 27
3.1.3 CST Microwave Studio 30
3.2 Simulation setup 30
3.2.1 Environment setting 30
3.2.2 Device design 30
3.3 Simulation result 32
3.3.1 Characteristic of Fano-like Resonance 32
3.3.2 Q-factor analysis 33
3.4 Refractive index sensing 34
3.5 The detection length 38
Chapter 4 Experimental Procedure 40
4.1 CST Microwave Studio Simulations Methods 40
4.2 Electron Beam Lithography (EBL) Process 40
4.3 Electron gun (E-gun) Evaporation of Gold & Lift-off 43
4.4 Fourier transform infrared spectroscopy (FTIR) 45
Chapter 5 Experimental results and discussion 46
5.1 EBL result 46
5.2 Discussion 47
Chapter 6 Conclusions and future works 48
6.1 Conclusions 48
6.2 Future works 48
Reference 49

[1] Terahertz Science Group University of Fukui (FIR-FU). (2011). What is THz-TDS Available: http://fir.u-fukui.ac.jp/thzlab/index_E.html
[2] Theophilou, Georgios, et al. "ATR-FTIR spectroscopy coupled with chemometric analysis discriminates normal, borderline and malignant ovarian tissue: classifying subtypes of human cancer." Analyst 141.2 (2016): 585-594.
[3] Fernández-Suárez M, T.A., Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Bio, 2008.
[4] Paddock, S.W., Confocal laser scanning microscopy. Biotechniques, 1999.27(5): p. 992
[5] Tan, C. W., Gardiner, B. S., Hirokawa, Y., Layton, M. J., Smith, D. W., & Burgess, A. W. (2012). Wnt signalling pathway parameters for mammalian cells. PloS one, 7(2), e31882.
[6] Barer, R., A. R. H. Cole, and H. W. Thompson. "Infra-red spectroscopy with the reflecting microscope in physics, chemistry and biology." Nature 163.4136 (1949): 198-201.
[7] Levin, Ira W., and Rohit Bhargava. "Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition." Annu. Rev. Phys. Chem. 56 (2005): 429-474.
[8] Reffner, John A., Pamela A. Martoglio, and Gwyn P. Williams. "Fourier transform infrared microscopical analysis with synchrotron radiation: the microscope optics and system performance." Review of Scientific Instruments 66.2 (1995): 1298-1302.
[9] Carter, Michael R., et al. "Livermore imaging Fourier transform infrared spectrometer (LIFTIRS)." Proc. SPIE. Vol. 2480. 1995.
[10] Rothenhäusler, Benno, and Wolfgang Knoll. "Surface–plasmon microscopy." Nature 332.6165 (1988): 615-617.
[11] Lahiri, Basudev, et al. "Asymmetric split ring resonators for optical sensing of organic materials." Optics express 17.2 (2009): 1107-1115.
[12] Giebel, K-F., et al. "Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy." Biophysical journal 76.1 (1999): 509-516.
[13] Chang, Yun-Tzu, et al. "A multi-functional plasmonic biosensor." Optics Express 18.9 (2010): 9561-9569.
[14] Verellen, Niels, et al. "Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing." Nano letters 11.2 (2011): 391-397.
[15] Pendry, John B., et al. "Magnetism from conductors and enhanced nonlinear phenomena." IEEE transactions on microwave theory and techniques 47.11 (1999): 2075-2084.
[16] Smith, David R., et al. "Composite medium with simultaneously negative permeability and permittivity." Physical review letters 84.18 (2000): 4184.
[17] Zhao, Qian, et al. "Mie resonance-based dielectric metamaterials." Materials Today 12.12 (2009): 60-69.
[18] Sinclair, M., et al. "All dielectric infrared metamaterial." SPIE Optics+ Photonics (2011): 8093-44.
[19] Miroshnichenko, Andrey E., Sergej Flach, and Yuri S. Kivshar. "Fano resonances in nanoscale structures." Reviews of Modern Physics 82.3 (2010): 2257.
[20] Fedotov, V. A., et al. "Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry." Physical review letters 99.14 (2007): 147401.
[21] Zhang, Jianfa, Kevin F. MacDonald, and Nikolay I. Zheludev. "Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial." Optics express 21.22 (2013): 26721-26728.
[22] Zhang, Jian, et al. "Sensitivity enhancement through overlapping simultaneously excited Fano resonance modes of metallic-photonic-crystal sensors." Optics express 22.3 (2014): 3296-3305.
[23] Lahiri, Basudev, et al. "Asymmetric split ring resonators for optical sensing of organic materials." Optics express 17.2 (2009): 1107-1115.
[24] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, pp. 302-307, May 1996.
[25] Zhang, Jianfa, Kevin F. MacDonald, and Nikolay I. Zheludev. "Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial." Optics express 21.22 (2013): 26721-26728.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *