帳號:guest(52.14.2.251)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):康乃中
作者(外文):Kang, Nai-Chung
論文名稱(中文):光熱共光路干涉儀系統之設置與電漿輔助化學氣象沉積法沉積之氮化矽薄膜光學吸收研究
論文名稱(外文):Photothermal common-path interferometry system setup and study of the optical absorption of the silicon nitride films deposited by PECVD method
指導教授(中文):趙煦
指導教授(外文):Chao, Shiuh
口試委員(中文):李正中
陳至信
口試委員(外文):Lee, Cheng-Chung
Chen, Jyh-Shin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:104066513
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:101
中文關鍵詞:光學吸收機械損耗熱擾動氮化矽薄膜
外文關鍵詞:optical absorptionmechanical lossthermal noisesilicon nitride film
相關次數:
  • 推薦推薦:0
  • 點閱點閱:66
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
本實驗室參與重力波觀測組織(LIGO, Laser Interferometer Gravitational wave Observatory)的研究計畫,致力於研究大型麥克森干涉儀裡高反射鏡的材料。由於重力波訊號極其微弱,如何降低雜訊成了一項重要的研究方向。由LIGO的理論雜訊頻譜圖可以得知,雜訊的來源大都來自Coating Brownian noise,就是反射鏡薄膜所產生的熱擾動(thermal noise),再根據fluctuation-dissipation theorem可以得知熱擾動跟薄膜的機械損耗成正比關係,如果可以得知薄膜的機械損耗就相當於了解薄膜的熱擾動程度。本實驗室所研究用電漿輔助化學氣象沉積法沉積的氮化矽薄膜室溫的機械損耗已經到達10-5order,跟常見高反射鏡中的光學薄膜Ta2O5的室溫機械損耗2x10-4相比,已經降低許多。但要符合LIGO規格的高反射鏡材料,除了要有低的機械損耗外、還必須具有極低的光學吸收,材料光學吸收的好壞將嚴重影響高反射鏡的品質。下世代低溫LIGO的大型麥克森干涉儀所使用的基板為矽基板,因應矽基板的光學吸收,將使用矽基板吸收較低波長1550nm的連續式(CW)雷射光源,因此透過研究得知氮化矽薄膜在1550nm波段的光學吸收非常重要。本實驗室起初利用橢圓偏光儀,企圖得知氮化矽薄膜在1550nm波段光學吸收值,但是因為吸收值太低的緣故,橢偏儀解析不出實質的吸收數值。所以本實驗室設置了一台光熱共光路干涉儀(Photothermal Common-path Interferometry),簡稱PCI。此裝置可以量測薄膜超低的光學吸收,本論文針對PCI系統的量測原理進行推導闡述、並說明架設的流程與量測步驟,再分析比較氮化矽薄膜的量測結果。得到氮化矽薄膜的光學吸收後,根據LIGO白皮書的規格,利用Macleod光學模擬軟體設計堆疊膜SiN0.40H0.79/SiO2的膜層數,再利用此膜層數計算堆疊膜SiN0.40H0.79/SiO2的thermal noise,最終再與LIGO的thermal noise理論曲線比較。
Our laboratory has participated in the research project of the Laser Interferometer Gravitational Wave Observatory(LIGO), which focused on the study of optical coating on the high reflective mirror in large-scale Michelson interferometers. As the gravity wave signal is extremely weak, how to reduce the noise has become an important issue. According to LIGO's theoretical noise spectrum, the source of the noise comes mostly from the Coating Brownian noise, which is the thermal noise generated by the optical coating on the high reflective mirror. In the light of fluctuation-dissipation theorem, it can be seen that the thermal noise is proportional to the mechanical loss of the film. Knowing the mechanical loss of the film is equivalent to understanding the level of thermal noise. The mechanical loss of the SiNxHy produced by PECVD in our laboratory has reached 10-5 order at room temperature. It is obviously much lower than the loss of common optical films Ta2O5 (2x10-4).
To meet the LIGO specifications of the high reflector material, apart from a low mechanical loss, a extreme low optical absorption is also necessary. The absorption will make great influence on the quality of high reflector. The latest low-temperature LIGO large-scale Michelson interferometer uses silicon substrate. In response to decrease the optical absorption of silicon substrates, CW laser light sources in 1550nm will be used. Therefore, the study of optical absorption of silicon nitride film in 1550nm is very important. At first, our laboratory used an ellipsometer to study the optical absorption of silicon nitride film in the 1550nm. However, because the absorption value was too low, the ellipsometer can not resolve the accurate absorption value. As a result, our laboratory deployed a Photothermal Common-path Interferometry(PCI) that can be used to estimate extreme low optical absorption. This thesis will expound the principle of measurement of PCI system, discuss the flow and measurement steps, and analyze the measurement results of silicon nitride film. After the data of optical absorption of the silicon nitride film was obtained, the number of layers of SiN0.40H0.79/SiO2 was calculated by Macleod optical simulation software according to the specifications of LIGO white paper. Next, the number of layers was used to calculate the thermal noise of SiN0.4/SiO2 layers. Finally, the data of the noise will be compared with the LIGO thermal noise theoretical curve.
Abstrate I
摘要 III
誌謝 IV
目錄 VI
圖目錄 VIII
表目錄 XII
第一章、導論 1
1.1 前言 1
1.2 研究動機 2
第二章、PCI系統基本原理 8
2.1 PCI基本介紹 8
2.2系統總吸收介紹 9
2.3 PCI量測原理 9
2.3-1 PCI基本原理 9
2.3-2薄膜吸收能量產生熱能 11
2.3-3 Probe相位變化 13
2.3-4 Probe干涉訊號 16
2.3-5系統吸收值計算 21
2.3-6 Calibration factor與Correction factor 25
第三章、PCI系統架設與軟體介面操作介紹 26
3.1系統儀器介紹與架設 26
3.1-1 Pump laser system 29
3.1-2 Probe laser system(PCI-box) 35
3.2 PCI量測介面軟體介紹 43
3.3 PCI量測步驟 50
第四章、PCI系統量測結果與分析 56
4.1 系統雜訊分析與標準片量測結果 56
4.1-1 PCI背景雜訊分析與Chopper頻率選擇及系統解析度 56
4.1-2 薄膜標準片量測結果 59
4.1-3 玻璃標準片量測結果 65
4.2 SiNxHy吸收值量測結果與分析 69
4.2-1 SiNXHy試片製作與均勻度改善 69
4.2-2 SiNxHy吸收值結果分析與比較 73
4.2-3 Pump laser power對吸收值影響 76
第五章、SiNxHy光學吸收與SiN0.40H0.79/SiO2堆疊膜thermal noise計算 79
5.1 SiNxHy光學吸收計算 79
5.2 SiN0.40H0.79/SiO2 堆疊結構之Thermal noise計算 82
第六章、總結未來與展望 90
6.1總結 90
6.2未來展望 90
附錄A Probe laser開關步驟 91
附錄B Pump laser開關步驟 93
附錄C PCI軟體輸出文件格式 95
附錄D PCI系統 2D掃描介面 96
附錄E 矽懸臂製作流程與室溫機械損耗量測機台 97
參考文獻 99

[1] ‘‘The Nobel Prize in Physics 2017’’. Nobelprize.org. Nobel Media AB 2014. Web. 9 Oct 2017. http://www.nobelprize.org/nobel_prizes/physics/laureates/2017/
[2] A. Einstein, ‘‘Die Grundlage der allgemeinen Relativitatsthrorie’’,Annalen der Physik 49.769(1916)
[3] B. P. Abbott, et al. Observation of Gravitational Waves from a Binary Black Hole Merger. PRL 116, 061102, 2016
[4] LIGO Scientific Collaboration Group. Instrument science white paper. Oct. 2011, LIGO- T1100309-v5: 7
[5] H. B. Callen, T. A. Weltont. Irreversibility and generalized noise. Phys. Rev., Jul. 1951, 83: 34-40
[6] R. F. Greene, H. B. Callen. On the formalism of thermodynamic fluctuation theory. Phys. Rev., Sep. 1951, 83: 1231-1235
[7] H. B. Callen, R. F. Greene. On a theorem of irreversible thermodynamics. Phys. Rev., Jun. 1952, 86: 702-710
[8] 莊友杭, ‘‘以電漿輔助化學氣象沉積法於矽懸臂沉積之氮化矽薄膜應力對機械損耗之影響暨機械損號量測系統改善’’, 國立清華大學, 碩士論文, 2014
[9] 陳信傑, ‘‘以電漿輔助化學氣象沉積法鍍製於矽懸臂基板之氮化矽薄膜其熱退火對機械損耗之影響’’, 國立清華大學, 碩士論文, 2017
[10] I. W. Martin. Studies of materials for use in future interferometric gravitational wave detectors. Ph. D. thesis, University of Glasgow, Feb. 2009
[11] K. Hejduk, K. Pierscinski, W. Rzodkiewicz, et al. Dielectric coatings for infrared detectors. Opt. Appl., 2005, XXXV: 437-442
[12] Stephen E, Bialkowski and Agnes Chartier. Diffraction effects in single-and two-laser photothermal lens spectroscopy. Appl. Opt. Vol. 36, No. 27, 6711-6721 (1997).
[13] Bahaa E. A. Saleh, Malvin Carl Teich,‘‘Fundamentals of photonic,’’John Wiley&Sons, 1991
[14] Cristine A. Carter and Joel M. Harris. Comparison of models describing the thermal lens effect. Appl. Opt. Vol. 23, No. 3, 476-481 (1983)
[15] A. L. Alexandrovski, Martin Fejer, Roger Route, Optical absorption measurement in sapphire, LIGO document:G000242-00-D
[16] A. L. Alexandrovski, M. M. Fejer, A. Markosyan, Photothermal common-path interferometry(PCI): New developments, Proc. SPIE 7193 (2009)
[17] http://www.stan-pts.com/index.html, Version7.2 help file
[18] Jessica Steinlechner, Christoph Kruger, lain w. Martin. Optical absorption of silicon nitride membranes at 1064nm and 1550nm. Phys. Rev. D 96 (2017)
[19] https://www.newport.com/p/FSQ-ND02
[20] https://en.wikipedia.org/wiki/Inconel
[21] https://www.schott.com/advanced_optics
[22] D. L. Smith, A. S. Alimonda, C. C. Chen, et al. Mechanism of SiNxHy deposition from NH3-SiH4 plasma. J. Electrochem. Soc., Feb. 1990, 137: 614-623
[23] J. N. Chiang, D. W. Hess. Mechanistic considerations in the plasma deposition of silicon nitride films. J. Electrochem. Soc., Jul. 1990, 137: 2222-2226
[24] Sami Franssila. Introduction to Microfabrication. John Wiley & Sons, 2004, Ch5.5:51-53, ISBN: 978-0-470-85106-7
[25] Jessica Steinlechner, lain w. Martin. Optical absorption of ion-beam sputter amorphous silicon coating. Phy. Rev. D 93, 062005 (2016)
[26] Jessica Steinlechner, lain w. Martin. Thermal noise reduction and absorption optimization via mutimaterial. Phy. Rev. D 91, 042001 (2015)
[27] 李正中. 薄膜光學與鍍膜技術. 藝軒圖書出版社, Apr. 2012, 第七版: 155-160, ISBN: 978-9-576-16970-0
[28] LIGO Scientific Collaboration Group. Instrument science white paper. Jul. 2016, LIGO- T15TBI-v1
[29] LIGO Scientific Collaboration Group. Requirements and Testing of Advanced LIOG Coating Optics. Sep. 2003, LIGO- T030233-00-D
[30] 王薇雅, ‘‘應用於雷射干涉重力波偵測器開發工作之單晶矽懸臂梁之機械震動性質研究’’, 國立清華大學, 碩士論文, 2013
[31] 吳孟筠, ‘‘利用電漿輔助化學氣相沉積法鍍製四分之一波長厚度SiN0.40/SiO2堆疊之室溫機械損耗’’, 國立清華大學, 碩士論文, 2016
[32] 歐政勳, ‘‘室溫下量測機械損耗之系統設置與量測熔融石英玻璃懸臂及單晶矽懸臂之初步量測分析’’, 國立清華大學, 碩士論文, 2012
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以電漿輔助化學氣相沉積法鍍製高氮氮化矽薄膜其熱退火對光學特性與機械特性之影響
2. 以電漿輔助化學氣相沉積法鍍製之低氮氮化矽薄膜經熱退火後光學特性及室溫機械損耗之研究
3. 以電漿輔助化學氣相沉積法鍍製氮氧化矽薄膜其光學特性與機械特性之探討
4. 以離子束濺鍍法鍍製氮化矽薄膜其光學特性之探討
5. 以補氫退火方式降低以電漿輔助化學氣相沉積法鍍製之高含氮量氮氧化矽薄膜光學特性與機械特性之研究
6. 以離子束濺鍍法製作低損耗薄膜應用於雷射干涉重力波偵測儀之高反射鏡製程準備
7. 利用電漿輔助化學氣相沉積法鍍製四分之一光學厚度氮氧化矽與氮化矽堆疊膜應用於雷射干涉重力波偵測器反射鏡之研究
8. 雙面鍍製於矽懸臂之高應力氮化矽薄膜之應力與機械損耗研究
9. 利用電漿輔助化學氣相沉積法鍍製低熱雜訊之氮化矽與氧化矽薄膜應用於雷射干涉重力波偵測器反射鏡之研究
10. 室溫下量測機械損耗之系統設置與量測熔融石英玻璃懸臂及單晶矽懸臂之初步量測分析
11. 鍺離子佈植SiO2薄膜之非線性通道波導之研究
12. 在五氧化二鉭與二氧化矽混合膜平面波導上施以熱極化之研究
13. 週期結構應用於發光二極體以提升光汲取效率之研究
14. 多晶矽薄膜製程研究及光學性質之研究
15. 自我複製式光子晶體與微反射鏡陣列應用於發光二極體以提升光汲取效率之研究
 
* *