|
[1] M. Fitzgerald-Hayes and F. Reichsman, DNA and Biotechnology (Academic Press, 2009). [2] B. E. Tropp, Molecular Biology (Jones & Bartlett Publishers, 2011). [3] M. Mindroiu, A.-M. Manea, I. Rau, J. G. Grote, H. C. Oliveira, A. Pawlicka, and F. Kajzar, "DNA-and DNA-CTMA-novel bio-nanomaterials for application in photonics and in electronics," in "Proc. SPIE," (2013), pp. 888202-1. [4] J. Roncali, "Synthetic principles for bandgap control in linear π-conjugated systems," Chemical Reviews 97, 173-206 (1997). [5] S. Delaney and J. K. Barton, "Long-range DNA charge transport," The Journal of Organic Chemistry 68, 6475-6483 (2003). [6] T.-Y. Lin, I.-C. Chen, and Y.-C. Hung, "Hole mobility characterization of DNA biopolymer by time-of-flight technique," Applied Physics Letters 101, 153701 (2012). [7] D. A. Neamen, Semiconductor physics and devices, vol. 3 (McGraw-Hill New York, 1997). [8] G. Horowitz, "Interfaces in organic field-effect transistors," Advances in Polymer Science 223, 113 (2009). [9] S. M. Sze and K. K. Ng, Physics of semiconductor devices (John wiley & sons, 2006). [10] A. Aviram and M. A. Ratner, "Molecular rectifiers," Chemical Physics Letters 29, 277 - 283 (1974). [11] L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, "Self-assembled supramolecular lms derived from marine deoxyribonucleic acid (DNA)- cationic surfactant complexes: large-scale preparation and optical and thermal properties," Chemistry of Materials 13, 1273-1281 (2001). [12] A. J. Steckl, "DNA-a new material for photonics?" Nature Photonics 1, 3-5 (2007). [13] R. M. Stoltenberg and A. T. Woolley, "DNA-templated nanowire fabrication," Biomedical Microdevices 6, 105-111 (2004). [14] Y. Lin, M. Yin, F. Pu, J. Ren, and X. Qu, "DNA-templated silver nanoparticles as a platform for highly sensitive and selective fluorescence turn-on detection of dopamine," Small 7, 1557-1561 (2011). [15] E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, "DNA-templated assembly and electrode attachment of a conducting silver wire," Nature 391, 775 (1998). [16] G. Acuna, F. Moller, P. Holzmeister, S. Beater, B. Lalkens, and P. Tinnefeld, "Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas," Science 338, 506-510 (2012). [17] G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl et al., "Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami," ACS nano 6, 3189-3195 (2012). [18] M. Pilo-Pais, A. Watson, S. Demers, T. LaBean, and G. Finkelstein, "Surface-enhanced raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures," Nano Letters 14, 2099-2104 (2014). [19] H. Ihmels and D. Otto, Intercalation of Organic Dye Molecules into Double-Stranded DNA - General Principles and Recent Developments (Springer Berlin Heidelberg, 2005), pp. 161-204. [20] C.-Y. Hung, W.-T. Tu, Y.-T. Lin, L. Fruk, and Y.-C. Hung, "Optically controlled multiple switching operations of DNA biopolymer devices," Journal of Applied Physics 118, 235503 (2015). [21] Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, "Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine," Applied Optics 46, 1507-1513 (2007). [22] J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier et al., "Investigation of polymers and marine-derived DNA in optoelectronics," The Journal of Physical Chemistry B 108, 8584-8591 (2004). [23] J. A. Hagen, W. Li, A. Steckl, and J. Grote, "Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer," Applied Physics Letters 88, 171109 (2006). [24] B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, "Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric," Journal of Applied Physics 100, 024514 (2006). [25] D. Eley and D. Spivey, "Semiconductivity of organic substances. part 9.-nucleic acid in the dry state," Transactions of the Faraday Society 58, 411-415 (1962). [26] J. Duchesne, J. Depireux, A. Bertinchamps, N. Cornet, and J. Van Der Kaa, "Thermal and electrical properties of nucleic acids and proteins," Nature 188, 405-406 (1960). [27] D. Eley, "Studies of organic semiconductors for 40 years-i the mobile π-electron-40 years on," Molecular Crystals and Liquid Crystals 171, 1-21 (1989). [28] P. J. de Pablo, F. Moreno-Herrero, J. Colchero, J. Gómez Herrero, P. Herrero, A. M. Baró, P. Ordejón, J. M. Soler, and E. Artacho, "Absence of DC-conductivity in λ-DNA," Physical Review Letters 85, 4992-4995 (2000). [29] D. Porath, A. Bezryadin, S. De Vries, and C. Dekker, "Direct measurement of electrical transport through DNA molecules," Nature 403, 635 (2000). [30] H.-W. Fink and C. Schonenberger, "Electrical conduction through DNA molecules," Nature 398, 407 (1999). [31] A. Y. Kasumov, M. Kociak, S. Guéron, B. Reulet, V. T. Volkov, D. V. Klinov, and H. Bouchiat, "Proximity-induced superconductivity in DNA," Science 291, 280-282 (2001). [32] K. W. Hipps, "It's all about contacts," Science 294, 536-537 (2001). [33] H.-Y. Lee, H. Tanaka, Y. Otsuka, K.-H. Yoo, J.-O. Lee, and T. Kawai, "Control of electrical conduction in DNA using oxygen hole doping," Applied Physics Letters 80, 1670-1672 (2002). [34] P. P. Yaney, F. Ouchen, and J. G. Grote, "Characterization of polymer, DNA-based, and silk thin film resistivities and of DNA-based films prepared for enhanced electrical conductivity," in "Proc. SPIE," (2009), p. 74030M. [35] R. Venkatramani, D. Y. Zang, C. Oh, J. Grote, and D. Beratan, "Photoconductivity and current-voltage characteristics of thin DNA films: experiments and modeling," in "SPIE NanoScience+ Engineering," (International Society for Optics and Photonics, 2009), pp. 74030B-74030B. [36] B. Zhou, S. J. Kim, C. M. Bartsch, E. M. Heckman, F. Ouchen, and A. N. Cartwright, "Optical properties of DNA-CTMA biopolymers and applications in metal-biopolymer-metal photodetectors," in "SPIE NanoScience+ Engineering," (International Society for Optics and Photonics, 2011), pp. 810308-810308. [37] J. C. Scott, "Metal-organic interface and charge injection in organic electronic devices," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21, 521-531 (2003). [38] B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh, and P. W. Blom, "Tuning of metal work functions with self-assembled monolayers," Advanced Materials 17, 621-625 (2005). [39] Y. Zhang, M. Wang, S. D. Collins, H. Zhou, H. Phan, C. Proctor, A. Mikhailovsky, F. Wudl, and T.-Q. Nguyen, "Enhancement of the photoresponse in organic field effect transistors by incorporating thin DNA layers," Angewandte Chemie International Edition 53, 244-249 (2014). [40] J. Skeidsvoll and P. M. Ueland, \Analysis of double-stranded DNA by capillary electrophoresis with laser-induced fluorescence detection using the monomeric dye SYBR green I," Analytical Biochemistry 231, 359-365 (1995). [41] C. O. Chui, A. K. Okyay, and K. C. Saraswat, "Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors," IEEE Photonics Technology Letters 15, 1585-1587 (2003). [42] F. Yakuphanoglu and B. F. Şenkal, "A hybrid p-Si/poly (1, 4-diaminoanthraquinone) photoconductive diode for optical sensor applications," Synthetic Metals 159, 311-314 (2009). [43] K. C. Kao, Dielectric phenomena in solids (Academic press, 2004). [44] F. Omnes, "Introduction to semiconductor photodetectors," Optoelectronic Sensors pp. 1-14 (2010). [45] C. Im, E. V. Emelianova, H. Bssler, H. Spreitzer, and H. Becker, "Intrinsic and extrinsic charge carrier photogeneration in phenyl-substituted polyphenylenevinylene-trinitrofluorenone blend systems," The Journal of Chemical Physics 117, 2961-2967 (2002). [46] S. Barth, H. Bssler, U. Scherf, and K. Mllen, "Photoconduction in thin films of a ladder-type poly-para-phenylene," Chemical Physics Letters 288, 147-154 (1998). [47] J. M. Beebe, V. B. Engelkes, L. L. Miller, and C. D. Frisbie, "Contact resistance in metal-moleculel-metal junctions based on aliphatic SAMs: Effects of surface linker and metal work function," Journal of the American Chemical Society 124, 11268-11269 (2002). [48] C. M. Bartsch, G. Subramanyam, J. G. Grote, K. M. Singh, R. R. Naik, B. Singh, and N. S. Sariciftci, "Bio-organic field effect transistors," in "NanoScience+ Engineering," (International Society for Optics and Photonics, 2007), pp. 66460K-66460K. [49] J. S. Liu, C. X. Shan, B. H. Li, Z. Z. Zhang, C. L. Yang, D. Z. Shen, and X. W. Fan, "High responsivity ultraviolet photodetector realized via a carrier-trapping process," Applied Physics Letters 97, 251102 (2010). [50] F. Xie, H. Lu, X. Xiu, D. Chen, P. Han, R. Zhang, and Y. Zheng, "Low dark current and internal gain mechanism of GaN MSM photodetectors fabricated on bulk GaN substrate," Solid-State Electronics 57, 39-42 (2011). |