帳號:guest(3.23.92.135)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王若馨
作者(外文):Wang, Jo-Hsin
論文名稱(中文):DNA 生物高分子複合物之光反應特性研究
論文名稱(外文):Study of Photoresponsive Properties of DNA Biopolymer Composites
指導教授(中文):洪毓玨
指導教授(外文):Hung, Yu-Chueh
口試委員(中文):黃勝廣
李明昌
口試委員(外文):Hwang, Sheng-Kwang
Lee, Ming-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:104066512
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:52
中文關鍵詞:脫氧核醣核酸有機光響應元件光反應特性
外文關鍵詞:deoxyribonucleic acidorganic photoresponsive devicephotoreponsive properties
相關次數:
  • 推薦推薦:0
  • 點閱點閱:78
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
脫氧核醣核酸 (Deoxyribonucleic acid, DNA) 為一種天然、有機、無害的材料,在科學領域上已經被廣泛運用,而改質後的 DNA 生物高分子薄膜具有製程簡單、可撓性、可見光波段的高穿透性等優勢,已經被運用於各式光電元件中。但是有機高分子材料因其複雜的堆疊結構,在原子間共振、分子間共振亦或電子傳遞方式等皆會對元件的表現產生影響。因此 DNA 生物高分子複合物於元件中所扮演的角色更需要被探討,然而目前對 DNA 生物高分子複合物於光電導元件相關研究有在許多方面仍有待釐清,例如電子-電洞對形成、載子傳遞、載子再複合等。
在本研究中我們即以 DNA 生物高分子複合物作為主要材料,建構出簡易三明治結構的元件,研究其光反應性質。首先,我們透過改變照射光的波長、施加偏壓、照光功率等探討元件的表現,並且以相對電流變化量與響應率方式統計,從統計結果中發現波長愈短,元件響應愈大。同時也透過對元件照射 UV 光與紫光時的光電流對光功率擬合,發現元件在照射這兩種光源時可能存在不同機制,我們以能隙間存在連續陷阱與單分子再複合解釋實驗結果。另一方面,使用不同電極材料做比較,發現 DNA 生物高分子複合物與金屬接面會有介面偶極效應產生。之後我們討論元件響應可能的來源,並透過摻雜銀奈米粒子或是改變電極鍍率等方式探討其結果。最後,我們對元件進行了穩定性討論。
Deoxyribonucleic acid (DNA), a natural, organic and harmless material, has been widely used in a lot of fields. DNA-based biopolymer films demonstrated in many kinds of optoelectronic devices, have several advantages, including ease of fabrication, flexible and high transmittance in the visible region. On the other hand, the complex behaviors of organic materials, including interatomic resonance, intermolecular resonance or charge transportation in organic materials play crucial roles on the electrical and optical properties of devices. For reasons outlined above, it is of great importance to understand the role of DNA biopolymer composites in optoelectronic devices. However, there is still lack of in-depth investigation on the generation of electron-hole pairs, charge transportation and charge recombination properties of devices base on DNA biopolymer composites.
In this study, we employed a simple sandwich structure based on DNA biopolymer composites to investigate the photoreponsive properties. In the first part of this study, we analyzed the optoelectronic properties through change the excitation wavelength, applied biases and intensity of incident light. The results were evaluated by normalized photoinduced current and responsivity, which showed that higher photoresponses were achieved with a shorter wavelength of light. Meanwhile, we fitted the photocurrent of the device with respect to optical power when irradiated by UV and violet light. The performance was explained by two mechanisms, which are related to continuous distribution of trapping centers and monomolecular recombination. The interfacial dipole at the biopolymer-metal interface could also be observed when changing the electrode materials. Based on the measurement results, we discussed possible origins of photocurrent and further studied the performance by doping silver nanoparticles (Ag NPs) and varying the deposition rate of electrode. Lastly, we performed a reliability test of the device and discussed the results.
第一章 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 DNA 介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 DNA 與 DNA 複合材料 . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 DNA 與 DNA 複合材料於光電領域的應用 . . . . . . . . . . . . 2
1.2 材料電性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 DNA 載子傳導 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 金屬與介電材料薄膜介面 . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2.1 金屬與半導體接觸 . . . . . . . . . . . . . . . . . . . . . 7
1.2.2.2 金屬與有機半導體接觸 . . . . . . . . . . . . . . . . . . 11
1.2.2.3 金屬與介電薄膜載子傳導機制 . . . . . . . . . . . . . . 13
1.3 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
第二章 實驗方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 DNA-CTMA 奈米複合材料備製 . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 DNA 材料準備 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 DNA-CTMA 高分子材料合成 . . . . . . . . . . . . . . . . . . . . 16
2.2 光電導元件製作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 特性量測儀器與量測方式 . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 膜厚分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 光學吸收量測 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 光功率量測 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 電性分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
第三章 實驗結果與討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1 ITO/DNA-CTMA/Ag 三明治結構光電導元件電性 . . . . . . . . . . . . 22
3.1.1 光電導特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 波長對元件影響 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 電場對元件影響 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4 光功率對元件影響 . . . . . . . . . . . . . . . . . . . . . . . . . . 27
第四章 元件機制討論與驗證 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1 光電流產生機制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.1 DNA-CTMA 與銀奈米粒子交互作用的激子解離 . . . . . . . . . 33
4.2 載子傳遞機制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.1 金屬與半導體接面 . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 載子於元件的載子傳遞 . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 穩定性測試 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
第五章 結果與未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



[1] M. Fitzgerald-Hayes and F. Reichsman, DNA and Biotechnology (Academic Press, 2009).
[2] B. E. Tropp, Molecular Biology (Jones & Bartlett Publishers, 2011).
[3] M. Mindroiu, A.-M. Manea, I. Rau, J. G. Grote, H. C. Oliveira, A. Pawlicka, and F. Kajzar, "DNA-and DNA-CTMA-novel bio-nanomaterials for application in photonics and in electronics," in "Proc. SPIE," (2013), pp. 888202-1.
[4] J. Roncali, "Synthetic principles for bandgap control in linear π-conjugated systems," Chemical Reviews 97, 173-206 (1997).
[5] S. Delaney and J. K. Barton, "Long-range DNA charge transport," The Journal of Organic Chemistry 68, 6475-6483 (2003).
[6] T.-Y. Lin, I.-C. Chen, and Y.-C. Hung, "Hole mobility characterization of DNA biopolymer by time-of-flight technique," Applied Physics Letters 101, 153701 (2012).
[7] D. A. Neamen, Semiconductor physics and devices, vol. 3 (McGraw-Hill New York, 1997).
[8] G. Horowitz, "Interfaces in organic field-effect transistors," Advances in Polymer Science 223, 113 (2009).
[9] S. M. Sze and K. K. Ng, Physics of semiconductor devices (John wiley & sons, 2006).
[10] A. Aviram and M. A. Ratner, "Molecular rectifi ers," Chemical Physics Letters 29, 277 - 283 (1974).
[11] L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, "Self-assembled supramolecular lms derived from marine deoxyribonucleic acid (DNA)- cationic surfactant complexes: large-scale preparation and optical and thermal properties," Chemistry of Materials 13, 1273-1281 (2001).
[12] A. J. Steckl, "DNA-a new material for photonics?" Nature Photonics 1, 3-5 (2007).
[13] R. M. Stoltenberg and A. T. Woolley, "DNA-templated nanowire fabrication," Biomedical Microdevices 6, 105-111 (2004).
[14] Y. Lin, M. Yin, F. Pu, J. Ren, and X. Qu, "DNA-templated silver nanoparticles as a platform for highly sensitive and selective fluorescence turn-on detection of dopamine," Small 7, 1557-1561 (2011).
[15] E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, "DNA-templated assembly and electrode attachment of a conducting silver wire," Nature 391, 775 (1998).
[16] G. Acuna, F. Moller, P. Holzmeister, S. Beater, B. Lalkens, and P. Tinnefeld, "Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas," Science 338, 506-510 (2012).
[17] G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl et al., "Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami," ACS nano 6, 3189-3195 (2012).
[18] M. Pilo-Pais, A. Watson, S. Demers, T. LaBean, and G. Finkelstein, "Surface-enhanced raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures," Nano Letters 14, 2099-2104 (2014).
[19] H. Ihmels and D. Otto, Intercalation of Organic Dye Molecules into Double-Stranded DNA - General Principles and Recent Developments (Springer Berlin Heidelberg, 2005), pp. 161-204.
[20] C.-Y. Hung, W.-T. Tu, Y.-T. Lin, L. Fruk, and Y.-C. Hung, "Optically controlled multiple switching operations of DNA biopolymer devices," Journal of Applied Physics 118, 235503 (2015).
[21] Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, "Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin fi lms doped with sulforhodamine," Applied Optics 46, 1507-1513 (2007).
[22] J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier et al., "Investigation of polymers and marine-derived DNA in optoelectronics," The Journal of Physical Chemistry B 108, 8584-8591 (2004).
[23] J. A. Hagen, W. Li, A. Steckl, and J. Grote, "Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer," Applied Physics Letters 88, 171109 (2006).
[24] B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, "Bio-organic-semiconductor-fi eld-effect-transistor based on deoxyribonucleic acid gate dielectric," Journal of Applied Physics 100, 024514 (2006).
[25] D. Eley and D. Spivey, "Semiconductivity of organic substances. part 9.-nucleic acid in the dry state," Transactions of the Faraday Society 58, 411-415 (1962).
[26] J. Duchesne, J. Depireux, A. Bertinchamps, N. Cornet, and J. Van Der Kaa, "Thermal and electrical properties of nucleic acids and proteins," Nature 188, 405-406 (1960).
[27] D. Eley, "Studies of organic semiconductors for 40 years-i the mobile π-electron-40 years on," Molecular Crystals and Liquid Crystals 171, 1-21 (1989).
[28] P. J. de Pablo, F. Moreno-Herrero, J. Colchero, J. Gómez Herrero, P. Herrero, A. M. Baró, P. Ordejón, J. M. Soler, and E. Artacho, "Absence of DC-conductivity in λ-DNA," Physical Review Letters 85, 4992-4995 (2000).
[29] D. Porath, A. Bezryadin, S. De Vries, and C. Dekker, "Direct measurement of electrical transport through DNA molecules," Nature 403, 635 (2000).
[30] H.-W. Fink and C. Schonenberger, "Electrical conduction through DNA molecules," Nature 398, 407 (1999).
[31] A. Y. Kasumov, M. Kociak, S. Guéron, B. Reulet, V. T. Volkov, D. V. Klinov, and H. Bouchiat, "Proximity-induced superconductivity in DNA," Science 291, 280-282 (2001).
[32] K. W. Hipps, "It's all about contacts," Science 294, 536-537 (2001).
[33] H.-Y. Lee, H. Tanaka, Y. Otsuka, K.-H. Yoo, J.-O. Lee, and T. Kawai, "Control of electrical conduction in DNA using oxygen hole doping," Applied Physics Letters 80, 1670-1672 (2002).
[34] P. P. Yaney, F. Ouchen, and J. G. Grote, "Characterization of polymer, DNA-based, and silk thin film resistivities and of DNA-based films prepared for enhanced electrical conductivity," in "Proc. SPIE," (2009), p. 74030M.
[35] R. Venkatramani, D. Y. Zang, C. Oh, J. Grote, and D. Beratan, "Photoconductivity and current-voltage characteristics of thin DNA films: experiments and modeling," in "SPIE NanoScience+ Engineering," (International Society for Optics and Photonics, 2009), pp. 74030B-74030B.
[36] B. Zhou, S. J. Kim, C. M. Bartsch, E. M. Heckman, F. Ouchen, and A. N. Cartwright, "Optical properties of DNA-CTMA biopolymers and applications in metal-biopolymer-metal photodetectors," in "SPIE NanoScience+ Engineering," (International Society for Optics and Photonics, 2011), pp. 810308-810308.
[37] J. C. Scott, "Metal-organic interface and charge injection in organic electronic devices," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21, 521-531 (2003).
[38] B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh, and P. W. Blom, "Tuning of metal work functions with self-assembled monolayers," Advanced Materials 17, 621-625 (2005).
[39] Y. Zhang, M. Wang, S. D. Collins, H. Zhou, H. Phan, C. Proctor, A. Mikhailovsky, F. Wudl, and T.-Q. Nguyen, "Enhancement of the photoresponse in organic fi eld effect transistors by incorporating thin DNA layers," Angewandte Chemie International Edition 53, 244-249 (2014).
[40] J. Skeidsvoll and P. M. Ueland, \Analysis of double-stranded DNA by capillary electrophoresis with laser-induced fluorescence detection using the monomeric dye SYBR green I," Analytical Biochemistry 231, 359-365 (1995).
[41] C. O. Chui, A. K. Okyay, and K. C. Saraswat, "Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors," IEEE Photonics Technology Letters 15, 1585-1587 (2003).
[42] F. Yakuphanoglu and B. F. Şenkal, "A hybrid p-Si/poly (1, 4-diaminoanthraquinone) photoconductive diode for optical sensor applications," Synthetic Metals 159, 311-314 (2009).
[43] K. C. Kao, Dielectric phenomena in solids (Academic press, 2004).
[44] F. Omnes, "Introduction to semiconductor photodetectors," Optoelectronic Sensors pp. 1-14 (2010).
[45] C. Im, E. V. Emelianova, H. Bssler, H. Spreitzer, and H. Becker, "Intrinsic and extrinsic charge carrier photogeneration in phenyl-substituted polyphenylenevinylene-trinitrofluorenone blend systems," The Journal of Chemical Physics 117, 2961-2967 (2002).
[46] S. Barth, H. Bssler, U. Scherf, and K. Mllen, "Photoconduction in thin fi lms of a ladder-type poly-para-phenylene," Chemical Physics Letters 288, 147-154 (1998).
[47] J. M. Beebe, V. B. Engelkes, L. L. Miller, and C. D. Frisbie, "Contact resistance in metal-moleculel-metal junctions based on aliphatic SAMs: Effects of surface linker and metal work function," Journal of the American Chemical Society 124, 11268-11269 (2002).
[48] C. M. Bartsch, G. Subramanyam, J. G. Grote, K. M. Singh, R. R. Naik, B. Singh, and N. S. Sariciftci, "Bio-organic field effect transistors," in "NanoScience+ Engineering," (International Society for Optics and Photonics, 2007), pp. 66460K-66460K.
[49] J. S. Liu, C. X. Shan, B. H. Li, Z. Z. Zhang, C. L. Yang, D. Z. Shen, and X. W. Fan, "High responsivity ultraviolet photodetector realized via a carrier-trapping process," Applied Physics Letters 97, 251102 (2010).
[50] F. Xie, H. Lu, X. Xiu, D. Chen, P. Han, R. Zhang, and Y. Zheng, "Low dark current and internal gain mechanism of GaN MSM photodetectors fabricated on bulk GaN substrate," Solid-State Electronics 57, 39-42 (2011).
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *