帳號:guest(3.141.192.246)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張茹慧
作者(外文):Zhang, Ru-Hui
論文名稱(中文):具有隨機三元閉包的廣義網絡配置模型
論文名稱(外文):A generalized configuration model with triadic closure
指導教授(中文):李端興
指導教授(外文):Lee, Duan-Shin
口試委員(中文):張正尚
高榮駿
黃仁竑
許獻聰
口試委員(外文):Chang, Cheng-Shang
Kao, Jung-Chun
Hwang, Ren-Hung
Sheu, Shiann-Tsong
學位類別:博士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:104065467
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:69
中文關鍵詞:配置模型度相關係數集聚係數社區偵測影響力擴散
外文關鍵詞:Configuration modelDegree correlationClustering coefficientCommunity detectionInfluence diffusion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:233
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這篇論文中,我們提出了一種具有隨機三元閉包的廣義網絡配置模型(簡稱GCTC)。該模型擁有5種基本網絡特性:大集聚係數,節點度呈現冪分佈,短路徑長度,非零點Pearson度相關係數和存在社區結構。我們分析推導了在特定条件下該模型的Pearson度相關係數和集聚係數的公式。我們選擇幾個真實世界網絡的資料集。我們用GCTC模型模擬真實網絡發現,在Pearson度相關係數和集聚係數這2種特性上,GCTC模型與真實網絡取值很接近。我們還選擇了3種著名的社區檢測演算法去對GCTC網絡、真實世界網絡和其他三個基準網絡模型進行社區檢測。結果發現,GCTC網絡在大多数情况下表现比其他三個基準網絡模型好。最後,我們使用獨立級聯模型和線性閾值模型在GCTC網絡上做影響力擴散模擬,我們發現GCTC模型在影響力擴散值上會比其他三種基準網絡模型更接近於真實世界網絡的取值。這些結果顯示,如果度相關係數和集聚係數對於網絡科學問題的解決起關鍵作用時,GCTC網絡模型會是一個研究此類問題的合適工具。
In this thesis we present a generalized configuration model with random triadic closure (GCTC). This model possesses five fundamental properties: large clustering coefficient, power law degree distribution, short path length, non-zero Pearson degree correlation, and existence of community structures. We analytically derive the Pearson degree correlation coefficient and the clustering coefficient of the proposed model. We select a few datasets of real-world networks. By simulation, we show that the GCTC model matches very well with the datasets in terms of Pearson degree correlations and clustering coefficients. We also test three well-known community detection algorithms on our model, the datasets and other three prevalent benchmark models. We show that the GCTC model performs equally well as the other three benchmark models. Finally, we perform influence diffusion on the GCTC model using the independent cascade model and the linear threshold model. We show that the influence spreads of the GCTC model are much closer to those of the datasets than the other benchmark models. This suggests that the GCTC model is a suitable tool to study network science problems where degree correlation or clustering plays an important role.
中 文摘 要 i
Abstract ii
Acknowledgements iii
List of Figures vi
List of Tables viii
1 Introduction 1
2 Construction Algorithm 6
3 Analyze the Pearson degree correlation Coeffi cient and the
Clustering Coeffi cient 11
3.1 Review of the Generalized Confi guration Model . . . . . 11
3.2 Pearson degree correlation Coeffi cient . . . . . . . . . . 16
3.3 Clustering Coeffi cient . . . . . . . . . . . . . . . . . . . 39
3.4 Numerical and Simulation Results . . . . . . . . . . . . 44
4 Real world applications of GCTC model 53
4.1 Modeling real-world networks . . . . . . . . . . . . . . 53
4.2 Community detection . . . . . . . . . . . . . . . . . . . 58
4.3 Infl uence diffusion . . . . . . . . . . . . . . . . . . . . 60
5 Conclusions 64
Bibliography 66
[1] M. Newman, Networks: An Introduction. New York: Oxford Uni-
versity Press, 2010.
[2] R. Toivonen, J.-P. Onnela, J. Saramäki, J. Hyvönen, and K. Kaski,
“A model for social networks,” Physica A: Statistical Mechanics
and its Applications, vol. 371, no. 2, pp. 851–860, 2006.
[3] E. Coupechoux and M. Lelarge, “How clustering affects epidemics
in random networks,” Advances in Applied Probability, vol. 46,
no. 4, pp. 985–1008, 2014.
[4] P. Trapman, “On analytical approaches to epidemics on networks,”
Theoretical population biology, vol. 71, no. 2, pp. 160–173, 2007.
[5] J. P. Gleeson, S. Melnik, and A. Hackett, “How clustering affects
the bond percolation threshold in complex networks,” Physical Re-
view E, vol. 81, no. 6, p. 066114, 2010.
[6] S. Morris, “Contagion,” The Review of Economic Studies, vol. 67,
no. 1, pp. 57–78, 2000.
[7] D. J. Watts and P. S. Dodds, “Networks, infl uence, and public opin-
ion formation,” Journal of Consumer Research, vol. 34, pp. 441 –
458, 2007.
[8] M. Boguñá, R. Pastor-Satorras, and A. Vespignani, “Absence of epi-
demic threshold in scale-free networks with degree correlations,”
Physical Review Letters, vol. 90, p. 028701, 2003.
[9] M. Boguñá and R. Pastor-Satorras, “Epidemic spreading in corre-
lated complex networks,” Physical Review E, vol. 66, p. 047104,
2002.
[10] V. M. Eguíluz and K. Klemm, “Epidemic threshold in structured
scale-free networks,” Physical Review Letters, vol. 89, no. 10,
108701, 2002.
[11] E. A. Bender and E. R. Canfi eld, “The asymptotic number of la-
belled graphs with given degree sequences,” J. Comb. Theory Series
A, vol. 24, pp. 296–307, 1978.
[12] D.-S. Lee, C.-S. Chang, M. Zhu, and H.-C. Li, “A generalized con-
fi guration model with degree correlations and its percolation analy-
sis,” Applied Network Science, vol. 4, no. 1, p. 124, Dec 2019.
[13] M. Newman, “Random graphs with clustering,” Physical review let-
ters, July 2009.
[14] C. Wang, O. Lizardo, and D. Hachen, “Algorithms for generating
large-scale clustered random graphs,” Network Science, vol. 2, pp.
403–415, July 2014.
[15] A. Rapoport, “Spread of information through a population with
socio-structural bias i: Assumption of transitivity,” Bulletin of
Mathematical Biophysics, vol. 15, no. 4, pp. 523 – 533, 12 1953.
[16] D. Easley and J. Kleinberg, Networks, crowds and markets reason-
ing about a highly connected world. Cambridge University Press,
2010.
[17] G. Kossinets and D. J. Watts, “Empirical analysis of an evolving
social network,” science, vol. 311, no. 5757, pp. 88–90, 2006.
[18] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, “Micro-
scopic evolution of social networks,” in Proceedings of the 14th
ACM SIGKDD international conference on Knowledge discovery
and data mining, 2008, pp. 462–470.
[19] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic net-
work embedding by modeling triadic closure process,” Proceedings
of the AAAI Conference on Artifi cial Intelligence , vol. 32, no. 1,
Apr. 2018.
[20] R. van der Hofstad, J. S. H. van Leeuwaarden, and C. Stegehuis,
“Triadic closure in confi guration models with unbounded degree
fl uctuations,” Journal of Statistical Physics, vol. 173, no. 3-4, pp.
746–774, jan 2018.
[21] H. Yin, A. R. Benson, and J. Ugander, “Measuring directed triadic
closure with closure coeffi cients,” Network Science, vol. 8, no. 4,
pp. 551–573, jun 2020.
[22] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic block
models: First steps,” Social Networks, vol. 5, no. 2, pp. 109–137,
1983.
[23] B. Karrer and M. E. J. Newman, “Stochastic blockmodels and
community structure in networks,” Phys. Rev. E, vol. 83, p. 016107,
Jan 2011. [Online]. Available: https://link.aps.org/doi/10.1103/Ph
ysRevE.83.016107
[24] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs
for testing community detection algorithms,” Physical review E,
vol. 78, no. 4, p. 046110, 2008.
[25] A. Lancichinetti and S. Fortunato, “Benchmarks for testing com-
munity detection algorithms on directed and weighted graphs with
overlapping communities,” Physical Review E, vol. 80, no. 1, p.
016118, 2009.
[26] B. Kami´nski, P. Prałat, and F. Théberge, “Artifi cial benchmark for
community detection (abcd)—fast random graph model with com-
munity structure,” Network Science, p. 1–26, 2021.
[27] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread
of infl uence through a social network,” in Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery
and data mining, 2003, pp. 137–146.
[28] P. Shakarian, A. Bhatnagar, A. Aleali, E. Shaabani, and R. Guo,
“The independent cascade and linear threshold models,” in Diffu-
sion in Social Networks. Springer, 2015, pp. 35–48.
[29] A. Borodin, Y. Filmus, and J. Oren, “Threshold models for com-
petitive infl uence in social networks,” in International workshop on
internet and network economics. Springer, 2010, pp. 539–550.
[30] Béla Bollobás, “A probabilistic proof of an asymptotic formula for
the number of labelled regular graphs,” European Journal of Com-
binatorics, vol. 1, pp. 311–316, 1980.
[31] A. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of
Majorization and Its Applications. New York: Springer, 2011.
[32] W. Feller, An Introduction to Probability Theory and Its Applica-
tion. New York: John Wiley & Sons Inc., 1971, vol. 1 and 2.
[33] P. Pons and M. Latapy, “Computing communities in large networks
using random walks,” ISCIS 2005, pp. 284–293, 2005.
[34] M. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” Phys. Rev. E, vol. 74, no. 3, p. 036104,
2006.
[35] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical review E, vol. 70, no. 6,
p. 066111, 2004.
[36] L. Danon, A. Díaz-Guilera, J. Duch, and A. Arenas, “Comparing
community structure identifi cation,” Journal of Statistical Mechan-
ics: Theory and Experiment, vol. 2005, p. P09008, 2005.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *