|
[1] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd Ed. Upper Saddle River, New Jersey, USA: Prentice-Hall, 2002. [2] Q. Li, H. Niu, A. Papathanassiou, and G. Wu, “5G network capacity: Key elements and technologies,” IEEE Veh. Technol. Mag., vol. 9, no. 3, pp. 71-78, Mar. 2014. [3] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Proc. IEEE Veh. Technol. Conf. – Spring (VTC–Spring), Dresden, Germany, Jun. 2013. [4] A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in Proc. Int. Symp. Intell. Signal Process. Commun. Syst. (ISPACS), Okinawa, Japan, Dec. 2013, pp. 770-774. [5] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York, NY, USA: Wiley, 1991. [6] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505, Dec. 2014. [7] John G. Proakis and M. Salehi, Digital Communications, 5th ed. New York, NY, USA: McGraw-Hill, 2008. [8] D. N. C. Tse, and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2005. [9] S.-L. Shieh and Y.-C. Huang, “A simple scheme for realizing the promised gains of downlink nonorthogonal multiple access,” IEEE Trans. Commun., vol. 64, no. 4, pp. 1624–1635, Apr. 2016. [10] S.-L. Shieh, C.-H. Lin, Y.-C. Huang and C.-L. Wang, “On gray labeling for downlink non-orthogonal multiple access without SIC,” IEEE Trans. Commun., vol. 20, no. 9, pp. 1721–1724, Sep 2016. [11] M. Qiu, Y.-C. Huang, S.-L. Shieh, and J. Yuan, “A Lattice-partition framework of downlink non-orthogonal multiple access without SIC,” IEEE Trans. Commun., vol. 66, no. 6, pp. 2532–2546, Jun. 2018. [12] M. Qiu, Y.-C. Huang, J. Yuan, and C.-L. Wang, “Lattice-partition-based downlink non-orthogonal multiple access without SIC for slow fading channels,” IEEE Trans. Commun., vol. 67, no. 2, pp. 1166–1181, Feb. 2019. [13] T. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory, vol. IT-18, no. 1, pp. 2–14, Jan. 1972. [14] A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse, “Wireless network information flow: a deterministic approach,” IEEE Trans. Inf. Theory, vol. 57, no. 4, pp. 1872–1905, Apr. 2011. [15] A. Dytso, D. Tuninetti, and N. Devroye, “i.i.d. mixed inputs and treating interference as noise are gDoF optimal for the symmetric Gaussian twouser interference channel,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2015, pp. 1716–1720. [16] U. Wachsmann, R. F. H. Fischer, and J. B. Huber, “Multilevel codes: theoretical concepts and practical design rules,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1361–1391, Jul. 1999. [17] G. D. Forney, M. D. Trott, and S.-Y. Chung, “Sphere-bound-achieving coset codes and multilevel coset codes,” IEEE Trans. Inf. Theory, vol. 46, no. 3, pp. 820–850, May 2000.
|