帳號:guest(18.116.40.28)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭皓宇
作者(外文):Cheng, Hao-Yu
論文名稱(中文):適用於多輸入多輸出毫米波系統之可擴展平行資料流混合預編碼處理器
論文名稱(外文):Scalable Parallel Data-Stream Hybrid Precoding Processor for mmWave MIMO Systems
指導教授(中文):黃元豪
指導教授(外文):Huang, Yuan-Hao
口試委員(中文):蔡佩芸
陳喬恩
黃穎聰
口試委員(外文):Tsai, Pei-Yun
Chen, Chiao-En
Hwang, Yin-Tsung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:104064542
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:67
中文關鍵詞:毫米波混合預編碼平行資料流混合預編碼處理器多輸入多輸出
外文關鍵詞:mmWaveHybrid PrecodingParallel Data-StreamScalableProcessorMIMO
相關次數:
  • 推薦推薦:0
  • 點閱點閱:478
  • 評分評分:*****
  • 下載下載:34
  • 收藏收藏:0
毫米波頻帶擁有大量的可用頻寬,因此相當適合使用於下一世代的行動通訊系統。而為了避免毫米波短波長引起的嚴重信號衰減和路徑損耗,多輸入多輸出毫米波系統利用大量傳送、接收天線陣列以減少訊號衰減。然而大量的天線導致所需的射頻鏈和數位類比轉換器較多,導致成本與功耗也較大。因此有了類比數位混合式預編碼架構來減少所需的射頻鏈、數位類比轉換器。混合預編碼器將預編碼過程分為部分在類比端作、部分在數位端作,來減少預編碼過程中減少數位類比間所需的取樣數。本論文提出了一種基於平行資料流架構的可擴展式低複雜度混合預編碼演法,使每筆資料流獨立作計算。本論文所提出的預編碼演算法使用TSMC 40nm CMOS製程來實作成硬體。所提出的預編碼處理器使用於16x16多輸入多輸出系統,且支援最多4筆資料流。處理器的最高頻率為120MHz,功耗為139mW。且處理器在1/2/3/4個資料流可分別達到6.67M/6.67M/6.67M/6.67M通道矩陣/每秒的吞吐量。
Millimeter wave (mmWave) multiple-input and multiple-output (MIMO) system provides high throughput for next generation system. To avoid severe signal attenuation and path loss caused by short wavelength, mmWave MIMO system utilizes large antenna arrays in transmitter and receiver to reduce fading. However, the high cost of radio frequency (RF) chain and data converter limits the number of antennas. Thus, hybrid analog/digital precoding was proposed to reduce the required number of RF chains and data converters under the condition of large antenna arrays. Hybrid precoding MIMO system divides precoding process into analog domain and digital domain in order to reduce the sampled data from digital precoding process.
In this thesis, we propose a scalable low complexity hybrid precoding algorithm based on parallel data-stream hardware architecture which enables independently computing for each data stream. Moreover, the proposed scalable precoding algorithm is implemented using TSMC 40 nm CMOS process technology. The proposed precoding processor supports the transmissions of 1 to 4 data streams for 16x16 mmWave MIMO systems. The operating frequency of this chip is 120 MHz and power consumption is 139 mW. The normalized throughput of this chip achieves 6.67M/6.67M/6.67M/6.67M channel-matrices per second in 1/2/3/4 data streams.
1 Introduction 1
1.1 Millimeter Wave MIMO Systems . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Hybrid Precoding for Millimeter Wave MIMO Systems 5
2.1 SVD-Based Digital Precoding . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Hybrid Analog/Digital Precoding . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Fully-connected Architecture . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Sub-connected Architecture . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Fully-connected Bitstream-based Architecture . . . . . . . . . . . 14
2.3 Channel Model for Millimeter Wave MIMO Systems . . . . . . . . . . . . 15
2.4 Hybrid Precoding/Combining Algorithms . . . . . . . . . . . . . . . . . . 17
2.4.1 Simultaneous Orthogonal Matching Pursuit (SOMP) . . . . . . . 17
2.4.2 Parallel-Index-Selection Matrix-Inverse-Bypass Simultaneous Orthogonal Matching Pursuit (PIS-MIB-SOMP) . . . . . . . . . . . 19
2.4.3 Multiple Orthogonal Codebook with Local Search . . . . . . . . . 21
2.4.4 Greedy Hybrid Precoding (GHP) . . . . . . . . . . . . . . . . . . 24
2.4.5 SIC-based Hybrid Precoding . . . . . . . . . . . . . . . . . . . . . 25

3 Proposed Hybrid Precoding Algorithm 31
3.1 Bitstream-Based Greedy Hybrid Precoding . . . . . . . . . . . . . . . . . 31
3.2 Simulation Result and Computation Complexity . . . . . . . . . . . . . . 35

4 Hardware Architecture 43
4.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Hybrid Vector/Rotation Mode CORDIC Processor . . . . . . . . . . . . 45
4.3 Pipelined Summation/Multiplication/Subtraction Unit . . . . . . . . . . 46
4.4 Timing Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Implementation Result 51
5.1 Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Layout Hierarchy and CHIP I/O . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Chip Specification and Simulation . . . . . . . . . . . . . . . . . . . . . . 53

6 Conclusion 63
[1] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Communications Magazine, vol. 49, no. 6, pp. 101–107, 2011.
[2] S. K. Yong and C.-C. Chong, “An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges,” EURASIP Journal on Wireless Communications and Networking, vol. 2007, no. 1, pp. 1–10, 2006.
[3] S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, “Mimo for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both?” IEEE Communications Magazine, vol. 52, no. 12, pp. 110–121, 2014.
[4] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave mimo systems,” IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499–1513, 2014.
[5] Y.-Y. Lee, C.-H. Wang, and Y.-H. Huang, “A hybrid rf/baseband precoding processor based on parallel-index-selection matrix- inversion-bypass simultaneous orthogonal matching pursuit for millimeter wave mimo systems,” IEEE Transactions on Signal Processing, vol. 63, no. 2, pp. 305–317, 2015.
[6] R. Mndez-Rial, C. Rusu, N. Gonzlez-Prelcic, and R. W. Heath, “Dictionary-free hybrid precoders and combiners for mmwave mimo systems,” in in Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC). IEEE, 2015, pp. 151–155.
[7] O. El Ayach, R. W. Heath, S. Abu-Surra, S. Rajagopal, and Z. Pi, “Low complexity precoding for large millimeter wave mimo systems,” in 2012 IEEE International Conference on Communications (ICC). IEEE, 2012, pp. 3724–3729.
[8] C.-T. Chang and C.-E. Chen, “A new hybrid precoders and combiners design architecture for millimeter wave mimo systems,” Master’s thesis, National Chung Cheng University, Taiwan, 2016.
[9] X. Gao, L. Dai, S. Han, C.-L. I, and R. W. Heath, “Energy-efficient hybrid analog and digital precoding for mmwave mimo systems with large antenna arrays,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 998–1009, 2016.
[10] X. Zhang, A. F. Molisch, and S.-Y. Kung, “Variable-phase-shift-based rf-baseband codesign for mimo antenna selection,” IEEE Transactions on Signal Processing, vol. 53, no. 11, pp. 4091–4103, 2005.
[11] E. Zhang and C. Huang, “On achieving optimal rate of digital precoder by rfbaseband codesign for mimo systems,” in 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall). IEEE, 2014, pp. 1–5.
[12] K.-N. Hsu, C.-G. He, and Y.-H. Huang, “Low-complexity hybrid beam-tracking algorithms and architectures for mmwave mimo systems,” in 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2016, pp. 1902–1905.
[13] Q. Spencer, B. Jeffs, M. Jensen, and A. Swindlehurst, “Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel,” Selected Areas in Communications, IEEE Journal on, vol. 18, no. 3, pp. 347–360, 2000.
[14] P. F. M. Smulders and L. Correia, “Characterisation of propagation in 60 ghz radio channels,” Electronics Communication Engineering Journal, vol. 9, no. 2, pp. 73–80, 1997.
[15] G. Huang and L. Wang, “High-speed signal reconstruction with orthogonal matching pursuit via matrix inversion bypass,” in Signal Processing Systems (SiPS), 2012 IEEE Workshop on. IEEE, 2012, pp. 191–196.
[16] C.-K. Ho and Y.-H. Huang, “Low complexity hybrid precoding algorithm using multiple orthogonal codebook matrices and local search,” Master’s thesis, National Tsing Hua University, Taiwan, 2016.
[17] C. Rusu, R. M´endez-Rial, N. Gonz´alez-Prelcicy, and R. W. Heath, “Low complexity hybrid sparse precoding and combining in millimeter wave mimo systems,” in 2015 IEEE International Conference on Communications (ICC). IEEE, 2015, pp. 1340–1345.
[18] W.-L. Hung, C.-H. Chen, C.-C. Liao, C.-R. Tsai, and A.-Y. A. Wu, “Lowcomplexity hybrid precoding algorithm based on orthogonal beamforming codebook,” in 2015 IEEE Workshop on Signal Processing Systems (SiPS). IEEE, 2015, pp. 1–5.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 適用於寬頻多輸入輸出毫米波系統之混合式預編碼演算法
2. 應用於寬頻多輸入多輸出毫米波系統下傳通訊協議及混合式預編碼處理晶片設計
3. Low Complexity Hybrid Precoding Algorithm using Multiple Orthogonal Codebook Matrices and Local Search
4. 多用戶多載波毫米波系統基於子系統奇異值分解與區塊對角化之混合式波束成形設計
5. 適用於多輸入多輸出毫米波系統混合波束追蹤之多處理單元粒子濾波器設計與實作
6. 5G毫米波光纖無線整合前傳網路中使用空頻區塊編碼改善非正交多重接取結合多點協作系統之技術
7. 適用於寬頻毫米波系統之混合式預編碼多輸入多輸出濾波正交分頻多工基頻處理器
8. 適用於二維天線陣列多輸入多輸出毫米波系統混合預編碼追蹤之張量處理器設計及實現
9. 適用於大量多輸入多輸出毫米波正交分頻多工通訊之基於改進塔克分解混合式波束成型設計及實作
10. 整合感測與通訊之強健式多基地台聯合波束成型與估計技術
11. 整合MIMO感測和通訊的前置序列設計
12. 適用於多輸入多輸出毫米波系統之混合訊號預編碼處理器設計與實作
13. 基於載波頻率偏移同步技術之毫米波多輸入多輸出混和預編碼濾波正交多頻分工處理器設計
14. 適用於第五代行動通訊系統之可重組濾波正交多頻分工基頻處理器
15. 第五代無線通訊系統基於編碼書之高效率巨量多重輸入多重輸出天線波束調準方法
 
* *