帳號:guest(3.145.104.192)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳佳峻
作者(外文):Wu, Jia-Jyun
論文名稱(中文):非均等錯誤保護類循環低密度偶校碼之解碼排程設計
論文名稱(外文):Decoding Scheduling Schemes for UEP QC-LDPC Codes
指導教授(中文):趙啟超
指導教授(外文):Chao, Chi-Chao
口試委員(中文):林茂昭
楊谷章
蘇育德
口試委員(外文):Lin, Mao-Chao
Yang, Guu-Chang
Su, Yu-Ted
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:104064521
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:44
中文關鍵詞:低密度偶校碼類循環碼非均等錯誤保護解碼排程
外文關鍵詞:LDPCQC-LDPCUnequal error protection (UEP)DecodingScheduling
相關次數:
  • 推薦推薦:0
  • 點閱點閱:778
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
低密度偶校碼(Low-Density Parity-Check Codes)已經被證實在足夠碼長下並且運行疊代訊息傳遞解碼(Iterative Message Passing Decoding) 時,能有接近薛農極限(Shannon limit)的表現,因此,近年來低密度偶校碼在通訊領域上備受矚目。類循環低密度偶校碼 (Quasi-Cyclic Low-Density Parity-Check Codes)是種常用的低密度偶校碼,其偶校矩陣具有良好的代數結構,且在實作上大幅降低硬體實現的複雜度。
  傳統的低密度偶校碼屬於均等錯誤保護(Equal Error Protection)碼,無論資料的重要性,對於每個碼字元(codeword bit)的錯誤保護能力皆相同;而具有非均等錯誤保護(Unequal Error Protection)能力的低密度偶校碼,在不同區段內的碼字元有著不同程度的錯誤保護能力,可以根據資料的重要性,而選擇不同的保護能力。
  一般而言,低密度偶校碼的解碼是基於總和-乘積演算法(Sum-Product Algorithm)而進行疊代訊息傳遞解碼。而傳統的解碼程序並沒有針對非均等錯誤保護能力的特性而做調整。在本論文中,我們提出合適非均等錯誤保護類循環低密度偶校碼的解碼排程調整,並且結合套用至幾種現有的解碼排程演算法上。從模擬結果可以驗證:套用我們提出的方法後,對於保護能力較差的碼字元,在固定的疊代次數下,能提供更好的效能。此外,對於平均的疊代次數也會減少,進而降低解碼的計算複雜度。
Low-density parity-check (LDPC) codes have been demonstrated to achieve near-capacity performance with iterative message-passing decoding and sufficiently long code length. Therefore, LDPC codes have attracted considerable attention because of their outstanding performance. Quasi-cyclic LDPC (QC-LDPC) codes with structured parity-check matrices are one type of LDPC codes. The advantages of QC-LDPC codes are efficient encoding/decoding and reduced complexity of very-large-scale integration (VLSI) implementation.

Traditional QC-LDPC codes provide equal error protection in the whole codeword; that is, each codeword bit exhibits the same performance regardless of its importance. QC-LDPC codes with unequal error protection (UEP) properties have different error-correcting capabilities for different parts of the codeword bits. The more important bits can have more protection.

LDPC decoding is usually executed by using iterative message-passing decoding based on the sum-product algorithm (SPA). However, conventional decoding algorithms were not designed for LDPC codes with UEP properties. In this thesis, we propose three decoding scheduling schemes for UEP QC-LDPC codes based on existing scheduling strategies. Simulation results are presented to verify that the proposed schemes can provide better bit error rate (BER)/block error rate (BLER) performance for a fixed number of iterations for subcodewords that are not on the higher protection levels. Furthermore, the average number of iterations can be reduced, thereby reducing the decoding computation complexity.
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Low-Density Parity-Check Codes . . . . . . . . . . . . . . . . . . .4
2.1 De_nition to LDPC Codes . . . . . . . . . . . . . . . . . . . . . 4
2.2 Sum-Product Decoding Algorithm . . . . . . . . . . . . . . . . . 6
2.3 Shu_ed Decoding Algorithm . . . . . . . . . . . . . . . . . . . .10
2.4 Informed Dynamic Scheduling Decoding Algorithm . . . . . . . . . 11

3 Preliminaries for UEP QC-LDPC Codes . . . . . . . . . . . . . . . .14
3.1 Quasi-Cyclic Low-Density Parity-Check Codes . . . . . . . . . . .14
3.2 Masking for QC-LDPC Codes . . . . . . . . . . . . . . . . . . . .15
3.3 UEP QC-LDPC Codes via Masking . . . . . . . . . . . . . . . . . .16

4 Decoding Scheduling Schemes . . . . . . . . . . . . . . . . . . . .22
4.1 Decoding Scheme Based on Flooding Scheduling . . . . . . . . . . 22
4.2 Decoding Scheme Based on Shu_ed Scheduling. . . . . . . . . . . .26
4.3 Decoding Scheme Based on NVCRBP Scheduling. . . . . . . . . . . .28
4.4 Simulation Results. . . . . . . . . . . . . . . . . . . . . . . .29

5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
[1] R. Gallager, "Low-density parity-check codes," IRE Trans. Inf. Theory, vol. 8, pp. 21-
28, Jan. 1962.
[2] R. Tanner, "A recursive approach to low complexity codes," IEEE Trans. Inf. Theory,
vol. 27, pp. 533-547, Sep. 1981.
[3] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, "Factor graphs and the sum-product
algorithm," IEEE Trans. Inf. Theory, vol. 47, pp. 498-519, Feb. 2001.
[4] D. J. C. MacKay, "Good error-correcting codes based on very sparse matrices," IEEE
Trans. Inf. Theory, vol. 45, pp. 399-431, Mar. 1999.
[5] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, "Design of capacityapproaching
irregular low-density parity-check codes," IEEE Trans. Inf. Theory, vol. 47,
pp. 619-637, Feb. 2001.
[6] A. Sridhara, T. Fuja, and R. M. Tanner, "Low density parity check matrices from
permutation matrices," in Proc. Conf. Inform. Sciences and Systems., Baltimore, MD,
Mar. 2001, p. 142.
[7] Y. Kou, S. Lin, and M. P. C. Fossorier, "Low-density parity-check codes based on finite
geometries: A rediscovery and new results," IEEE Trans. Inf. Theory, vol. 47, pp.
2711-2736, Nov. 2001.
[8] M. P. C. Fossorier, "Quasicyclic low-density parity-check codes from circulant permutation
matrices," IEEE Trans. Inf. Theory, vol. 50, pp. 1788-1793, Aug. 2004.
[9] C.-J.Wu, C.-H.Wang, and C.-C. Chao, "A new construction of UEP QC-LDPC codes,"
in Proc. IEEE Int. Symp. Inf. Theory, Austin, TX, Jun. 2010, pp. 849-853.
[10] ---, "Unequal error protection QC-LDPC codes via masking," in Proc. Int. Symp. Inf.
Theory and its Applications., Honolulu, HI, Oct. 2012, pp. 546-550.
[11] C.-J. Wu, "New constructions of equal error protection and unequal error protection
QC-LDPC codes," Ph.D. dissertation, Inst. Commun. Eng., Nat. Tsing Hua Univ.,
Hsinchu, Taiwan, R.O.C., 2016.
[12] C.-J. Wu, C.-H. Wang, and C.-C. Chao, "UEP constructions of quasi-cyclic low-density
parity-check codes via masking," IEEE Trans. Inf. Theory, vol. 63, pp. 6271-6294, Oct
2017.
[13] W. E. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge, UK:
Cambridge University Press, 2009.
[14] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, "High throughput low-density
parity-check decoder architectures," in Proc. IEEE Global Telecommun. Conf., San Anotonio,
TX, Nov. 2001, pp. 3019-3024.
[15] D. E. Hocevar, "A reduced complexity decoder architecture via layered decoding of
LDPC codes," in Proc. IEEE Workshop Signal Process. Syst., Austin, TX, Oct. 2004,
pp. 107-112.
[16] J. Zhang and M. Fossorier, "Shuffled belief propagation decoding," in Proc. IEEE Asilo-
mar Conf. Signals Syst. Comput, Pacific Grove, CA, Nov. 2002, pp. 8-15.
[17] ----, "Shuffled iterative decoding," IEEE Trans. Commun., vol. 53, pp. 209-213, Feb.
2005.
[18] G. Elidan, I. McGraw, and D. Koller, "Residual belief propagation: Informed scheduling
for asynchronous message passing," in Proc. Conf. Uncertainty Artificial Intell.,
Cambridge, MA, Jul. 2006, pp. 165-173.
[19] A. I. V. Casado, M. Griot, and R. D. Wesel, "Informed dynamic scheduling for beliefpropagation
decoding of LDPC codes," in Proc. IEEE Int. Conf. Commun., Glasgow,
UK, Jun. 2007, pp. 932-937.
[20] J. H. Kim, M. Y. Nam, H. Y. Song, and K. M. Lee, "Variable-to-check residual belief
propagation for informed dynamic scheduling of LDPC codes," in Proc. Int. Symp. Inf.
Theory Applicat., Auckland, New Zealand, Dec. 2008, pp. 1-4.
[21] T. Xia, H. C. Wu, and S. C. H. Huang, "A novel fast LDPC decoder using app-based
dynamic scheduling scheme," in Proc. IEEE Global Commun. Conf., San Diego, CA,
Dec. 2015, pp. 1-6.
[22] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, "LDPC block
and convolutional codes based on circulant matrices," IEEE Trans. Inf. Theory, vol. 50,
pp. 2966-2984, Dec. 2004.
[23] J. Xu, L. Chen, I. Djurdjevic, S. Lin, and K. Abdel-Ghaffar, "Construction of regular
and irregular LDPC codes: Geometry decomposition and masking," IEEE Trans. Inf.
Theory, vol. 53, pp. 121-134, Jan. 2007.
[24] B. Masnick and J. Wolf, "On linear unequal error protection codes," IEEE Trans. Inf.
Theory, vol. 13, pp. 600-607, Oct. 1967.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *