|
[1] W.-K. Ma, J. M. Bioucas-Dias, T.-H. Chan, N. Gillis, P. Gader, A. J. Plaza, A. Ambikapathi, and C.-Y. Chi, “A signal processing perspective on hyperspectral unmixing,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 67–81, 2014. [2] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data analysis and future challenges,” IEEE Trans. Geosci. Remote Sens., vol. 1, no. 2, pp. 6–36, Jun. 2013. [3] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot, “Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches,” IEEE J. Sel. Topics Appl. Earth Observ., vol. 5, no. 2, pp. 354–379, May 2012. [4] S. Chaudhuri and K. Kotwal, Hyperspectral Image Fusion. Springer Publishing Company, 2013. [5] L. Loncan, L. B. de Almeida, J. M. Bioucas-Dias, X. Briottet, J. Chanussot, N. Dobigeon, S. Fabre, W. Liao, G. A. Licciardi, M. Simoes, J. Y. Tourneret, M. A. Veganzones, G. Vivone, Q. Wei, and N. Yokoya, “Hyperspectral pansharpening: A review,” IEEE Geosci. Remote Sens. Mag., vol. 3, no. 3, pp. 27–46, Sep. 2015. [6] M. D. Mura, S. Prasad, F. Pacifici, P. Gamba, J. Chanussot, and J. A. Benediktsson, “Challenges and opportunities of multimodality and data fusion in remote sensing,” Proc. IEEE, vol. 103, no. 9, pp. 1585–1601, Sep. 2015. [7] B. Aiazzi, S. Baronti, and M. Selva, “Improving component substitution pansharpening through multivariate regression of ms + pan data,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3230–3239, Oct. 2007. [8] C. Thomas, T. Ranchin, L. Wald, and J. Chanussot, “Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1301–1312, May 2008. [9] G. Vivone, R. Restaino, M. D. Mura, G. Licciardi, and J. Chanussot, “Contrast and error-based fusion schemes for multispectral image pansharpening,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 5, pp. 930–934, May 2014. [10] W. Liao, X. Huang, F. Van Coillie, S. Gautama, A. Piˇzurica, W. Philips, H. Liu, T. Zhu, M. Shimoni, G. Moser et al., “Processing of multiresolution thermal hyperspectral and digital color data: Outcome of the 2014 IEEE GRSS data fusion contest,” IEEE J. Sel. Topics Appl. Earth Observ., vol. 8, no. 6, pp. 2984–2996, May 2015. [11] N. Yokoya and A. Iwasaki, “Hyperspectral and multispectral data fusion mission on hyperspectral imager suite (HISUI),” in Proc. IEEE IGARSS, Melbourne, Australia, Jul. 21–26, 2013, pp. 4086–4089. [12] C. Lanaras, E. Baltsavias, and K. Schindler, “Advances in hyperspectral and multispectral image fusion and spectral unmixing,” Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., pp. 451–458, Aug. 2015. [13] N. Yokoya, C. Grohnfeldt, and J. Chanussot, “Hyperspectral and multispectral data fusion: A comparative review of the recent literature,” IEEE Geosci. Remote Sens. Mag., vol. 5, no. 2, pp. 29–56, Jun. 2017. [14] Q. Wei, J. M. Bioucas-Dias, N. Dobigeon, and J. Y. Tourneret, “Hyperspectral and multispectral image fusion based on a sparse representation,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 7, pp. 3658–3668, Jul. 2015. [15] Q. Wei, N. Dobigeon, and J. Y. Tourneret, “Bayesian fusion of multi-band images,” IEEE J. Sel. Topics Signal Process., vol. 9, no. 6, pp. 1117–1127, Sep. 2015. [16] M. Simes, J. M. Bioucas-Dias, L. B. Almeida, and J. Chanussot, “A convex formulation for hyperspectral image superresolution via subspace-based regularization,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3373–3388, Jun. 2015. [17] A. S. Charles, B. A. Olshausen, and C. J. Rozell, “Learning sparse codes for hyperspectral imagery,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 5, pp. 963–978, May 2011. [18] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999. [19] N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, pp. 528–537, Feb. 2012. [20] Y. Zhang, Y. Wang, Y. Liu, C. Zhang, M. He, and S. Mei, “Hyperspectral and multispectral image fusion using CNMF with minimum endmember simplex volume and abundance sparsity constraints,” in Proc. IEEE IGARSS, Milan, Italy, Jul. 26–31, 2015, pp. 1929–1932. [21] M. Selva, B. Aiazzi, F. Butera, L. Chiarantini, and S. Baronti, “Hypersharpening: A first approach on SIM-GA data,” IEEE J. Sel. Topics Appl. Earth Observ., vol. 8, no. 6, pp. 3008–3024, Jun. 2015. [22] M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and J. F. Huntington, “ICE: A statistical approach to identifying endmembers in hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 10, pp. 2085–2095, Oct. 2004. [23] C.-Y. Chi, W.-C. Li, and C.-H. Lin, Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications. CRC Press, Boca Raton, FL, 2017. [24] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundat. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011. [25] P.-A. Thouvenin, N. Dobigeon, and J.-Y. Tourneret, “Hyperspectral unmixing with spectral variability using a perturbed linear mixing model,” IEEE Trans. Signal Process., vol. 64, no. 2, pp. 525–538, Oct. 2016. [26] L. Wald, T. Ranchin, and M. Mangolini, “Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images,” Photogramm. Eng. Remote Sens., vol. 63, no. 6, pp. 691–699, 1997. [27] C.-H. Lin, F. Ma, C.-Y. Chi, and C.-H. Hsieh, “A convex optimization based coupled non-negative matrix factorization algorithm for hyperspectral and multispectral data fusion,” accepted for publication as a regular paper in IEEE Trans. Geosci. Remote Sensing. [28] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44–57, Jan. 2002. [29] Q. Wei, J. M. Bioucas-Dias, N. Dobigeon, J. Y. Tourneret, M. Chen, and S. Godsill, “Multiband image fusion based on spectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 7236–7249, Dec. 2016. [30] C.-H. Lin, W.-K. Ma, W.-C. Li, C.-Y. Chi, and A. Ambikapathi, “Identifiability of the simplex volume minimization criterion for blind hyperspectral unmixing: The no-pure-pixel case,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 10, pp. 5530–5546, Oct. 2015. [31] J. Chen, C. Richard, and P. Honeine, “Nonlinear estimation of material abundances in hyperspectral images with 1-norm spatial regularization,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2654–2665, Jun. 2014. [32] C.-H. Lin, C.-Y. Chi, Y.-H. Wang, and T.-H. Chan, “A fast hyperplane-based minimum-volume enclosing simplex algorithm for blind hyperspectral unmixing,” IEEE Trans. Signal Process., vol. 64, no. 8, pp. 1946–1961, Apr. 2016. [33] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 1.21,” http://cvxr.com/cvx/, Apr. 2011. [34] E. Wycoff, T. H. Chan, K. Jia, W.-K. Ma, and Y. Ma, “A non-negative sparse promoting algorithm for high resolution hyperspectral imaging,” in Proc. IEEE ICASSP, Vancouver, Canada, May 26–31, 2013, pp. 1409–1413. [35] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. Prentice Hall Englewood Cliffs, NJ, 1989. [36] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process., vol. 13, no. 10, pp. 1327– 1344, Oct. 2004. [37] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimization with biconvex functions: A survey and extensions,” Mathematical Methods of Operations Research, vol. 66, no. 3, pp. 373–407, 2007. [38] ROSIS Free Pavia University Data. [Online]. Available: http://www.ehu.eus/ ccwintco/index.php?title=Hyperspectral Remote Sensing Scenes. [39] R. W. Basedow, D. C. Carmer, and M. E. Anderson, “Hydice system: Implementation and performance,” Proc. SPIE, vol. 2480, pp. 258–267, Jun. 1995. [40] AVIRIS Free Standard Data Products. [Online]. Available: http://aviris.jpl. nasa.gov/html/aviris.freedata.html. [41] C. Lanaras, E. Baltsavias, and K. Schindler, “Hyperspectral superresolution by coupled spectral unmixing,” in Proc. IEEE ICCV, Santiago, Chile, Dec. 11–18, 2015, pp. 3586–3594. [42] Q. Zhang, Y. Liu, R. S. Blum, J. Han, and D. Tao, “Sparse representation based multi-sensor image fusion: A review,” arXiv preprint arXiv:1702.03515, 2017.
|