帳號:guest(3.146.152.23)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝智翔
作者(外文):Hsieh, Chih-Hsiang
論文名稱(中文):基於凸優化之耦合非負矩陣分解演算法 應用於高光譜超解析度影像
論文名稱(外文):A Convex Optimization Based Coupled Non-negative Matrix Factorization Algorithm for Hyperspectral Image Super-resolution
指導教授(中文):祁忠勇
指導教授(外文):Chi, Chong-Yung
口試委員(中文):賴尚宏
林嘉文
口試委員(外文):Lai, Shang-Hong
Lin, Chia-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:104064515
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:56
中文關鍵詞:高光譜影像多光譜影像資料融合非負矩陣分解
外文關鍵詞:hyperspectral imagingmultispectral imagingdata fusionnon-negative matrix factorization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:183
  • 評分評分:*****
  • 下載下載:46
  • 收藏收藏:0
近年來,使用低空間解析度高光譜影像(hyperspectral image)與高空間解析度多光譜影像(multispectral image)融合來獲取高空間解析度高光譜影像已被視為較為經濟的方法。使用耦合非負矩陣分解(CNMF)準則已經被報導可以獲得良好的融合成果。然而,該準則是一個病態的逆向問題(ill-posed inverse problem)。在本論文中,我們使用了正規化技術(regularization)提出一新演算法遠勝過 CNMF 演算法。我們引入兩種正規子(regularizer),其一為廣泛使用的稀疏化正規子,使豐度圖(abundance map)趨向於稀疏化;其二為針對端元(endmember,即物質之光譜特徵)之間距離平方總和降低的正規子。

由於所制定的問題具有雙凸(bi-convexity)的特性,我們將其分解成兩個子問題,
並使用交替方向乘子法(ADMM)設計出一個凸優化導向耦合非負矩陣分解演算法
(CO-CNMF),其中每個疊代步驟中都可以從凸優化理論求出封閉形式解(closed-form solution)。由於問題的尺度非常大,導致計算複雜度太高,我們藉由原閉式解中固有的矩陣結構進一步推導出替代的閉式解,因此大幅降低計算複雜度。

最後,我們以真實高光譜影像進行實驗,實驗內容分成三部分:首先,分析演算法中的參數選擇;其次,與現存的融合演算法進行比較,以驗證所提出之融合演算法的優良性能;最後,我們亦針對不完美圖像配準(imperfect co-registration)情況下所造成此演算法的性能損失。
In recent years, fusing a low-spatial-resolution hyperspectral image with a highspatial-resolution multispectral image has been thought of as an economical approach for obtaining high-spatial-resolution hyperspectral image. A fusion criterion, termed
coupled nonnegative matrix factorization (CNMF) has been reported to be effective in yielding promising fusion performance. However, the CNMF criterion amounts to an ill-posed inverse problem. In this thesis, we propose a new data fusion algorithm by suitable regularization that significantly outperforms the unregularized
CNMF algorithm. Besides utilizing the sparsity-promoting regularizer, which promotes the sparsity of the abundance map, we also incorporate the sum-of-squared endmember distances demoting regularizer.

Owing to the bi-convexity of the formulated optimization problem, we can decouple it into two convex subproblems. Each subproblem is then solved by a carefully designed alternating direction method of multiplers (ADMM), leading to a convex-optimization based CNMF (CO-CNMF) fusion algorithm, where each ADMM iterate is equipped with a closed-form solution. Since the problem size is very large, leading to high computational complexity of the proposed CO-CNMF algorithm, we futher obtain alternative expressions by exploiting some inherent matrix structure in those closed-form solutions, which greatly reduce the computational complexity.

Finally, we present some experiments using real hyperspectral data, which can be divided into three parts. The first part is to analyze how we choose parameters in our proposed algorithm. Second, we demonstrate its superior performance to some state-of-the-art fusion algorithms. Third, by some experimental results, we discuss its performance loss due to imperfect co-registration.
Chinese Abstract ii
Abstract iii
Acknowledgments v
List of Figures viii
List of Tables x
List of Notations 1

1 Introduction 2
1.1 Background on Hyperspectral and Multispectral Image Fusion 2
1.2 Related Works 3
1.3 Our Proposed Method 5

2 Signal Model and Problem Formulation 8
2.1 Sensor Observation Model 8
2.2 Linear Mixing Model 9
2.3 Problem Formulation 11

3 Convex Optimization Based Data Fusion Algorithm 13
3.1 Convex Optimization Based CNMF Algorithm 13
3.2 ADMM for Solving (3.5) 15
3.3 ADMM for Solving (3.6) 20

4 Simulation and Experimential Results 23
4.1 Data Generation 23
4.2 Performance Measures 27
4.3 Investigation on Model Order Selection
and Parameters Setting 28
4.4 Experimental Results 31
4.5 Performance Evaluation for Imperfect
Co-registration Case 37
4.6 Computer Programming 39

5 Conclusions 45

A Proof of Lemma 3.2.1 46
B Derivation of (3.16) 49
C Proof of Lemma 3.3.1 51
Bibliography 53
[1] W.-K. Ma, J. M. Bioucas-Dias, T.-H. Chan, N. Gillis, P. Gader, A. J. Plaza,
A. Ambikapathi, and C.-Y. Chi, “A signal processing perspective on hyperspectral unmixing,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 67–81, 2014.
[2] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi,
and J. Chanussot, “Hyperspectral remote sensing data analysis and future challenges,” IEEE Trans. Geosci. Remote Sens., vol. 1, no. 2, pp. 6–36, Jun. 2013.
[3] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and
J. Chanussot, “Hyperspectral unmixing overview: Geometrical, statistical, and
sparse regression-based approaches,” IEEE J. Sel. Topics Appl. Earth Observ.,
vol. 5, no. 2, pp. 354–379, May 2012.
[4] S. Chaudhuri and K. Kotwal, Hyperspectral Image Fusion. Springer Publishing
Company, 2013.
[5] L. Loncan, L. B. de Almeida, J. M. Bioucas-Dias, X. Briottet, J. Chanussot,
N. Dobigeon, S. Fabre, W. Liao, G. A. Licciardi, M. Simoes, J. Y. Tourneret,
M. A. Veganzones, G. Vivone, Q. Wei, and N. Yokoya, “Hyperspectral pansharpening: A review,” IEEE Geosci. Remote Sens. Mag., vol. 3, no. 3, pp. 27–46,
Sep. 2015.
[6] M. D. Mura, S. Prasad, F. Pacifici, P. Gamba, J. Chanussot, and J. A. Benediktsson, “Challenges and opportunities of multimodality and data fusion in remote
sensing,” Proc. IEEE, vol. 103, no. 9, pp. 1585–1601, Sep. 2015.
[7] B. Aiazzi, S. Baronti, and M. Selva, “Improving component substitution pansharpening through multivariate regression of ms + pan data,” IEEE Trans.
Geosci. Remote Sens., vol. 45, no. 10, pp. 3230–3239, Oct. 2007.
[8] C. Thomas, T. Ranchin, L. Wald, and J. Chanussot, “Synthesis of multispectral
images to high spatial resolution: A critical review of fusion methods based on
remote sensing physics,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 5, pp.
1301–1312, May 2008.
[9] G. Vivone, R. Restaino, M. D. Mura, G. Licciardi, and J. Chanussot, “Contrast
and error-based fusion schemes for multispectral image pansharpening,” IEEE
Geosci. Remote Sens. Lett., vol. 11, no. 5, pp. 930–934, May 2014.
[10] W. Liao, X. Huang, F. Van Coillie, S. Gautama, A. Piˇzurica, W. Philips, H. Liu,
T. Zhu, M. Shimoni, G. Moser et al., “Processing of multiresolution thermal
hyperspectral and digital color data: Outcome of the 2014 IEEE GRSS data
fusion contest,” IEEE J. Sel. Topics Appl. Earth Observ., vol. 8, no. 6, pp.
2984–2996, May 2015.
[11] N. Yokoya and A. Iwasaki, “Hyperspectral and multispectral data fusion mission
on hyperspectral imager suite (HISUI),” in Proc. IEEE IGARSS, Melbourne,
Australia, Jul. 21–26, 2013, pp. 4086–4089.
[12] C. Lanaras, E. Baltsavias, and K. Schindler, “Advances in hyperspectral and
multispectral image fusion and spectral unmixing,” Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., pp. 451–458, Aug. 2015.
[13] N. Yokoya, C. Grohnfeldt, and J. Chanussot, “Hyperspectral and multispectral
data fusion: A comparative review of the recent literature,” IEEE Geosci. Remote Sens. Mag., vol. 5, no. 2, pp. 29–56, Jun. 2017.
[14] Q. Wei, J. M. Bioucas-Dias, N. Dobigeon, and J. Y. Tourneret, “Hyperspectral
and multispectral image fusion based on a sparse representation,” IEEE Trans.
Geosci. Remote Sens., vol. 53, no. 7, pp. 3658–3668, Jul. 2015.
[15] Q. Wei, N. Dobigeon, and J. Y. Tourneret, “Bayesian fusion of multi-band images,” IEEE J. Sel. Topics Signal Process., vol. 9, no. 6, pp. 1117–1127, Sep.
2015.
[16] M. Simes, J. M. Bioucas-Dias, L. B. Almeida, and J. Chanussot, “A convex
formulation for hyperspectral image superresolution via subspace-based regularization,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3373–3388, Jun.
2015.
[17] A. S. Charles, B. A. Olshausen, and C. J. Rozell, “Learning sparse codes for
hyperspectral imagery,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 5, pp.
963–978, May 2011.
[18] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix
factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.
[19] N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled nonnegative matrix factorization
unmixing for hyperspectral and multispectral data fusion,” IEEE Trans. Geosci.
Remote Sens., vol. 50, no. 2, pp. 528–537, Feb. 2012.
[20] Y. Zhang, Y. Wang, Y. Liu, C. Zhang, M. He, and S. Mei, “Hyperspectral
and multispectral image fusion using CNMF with minimum endmember simplex
volume and abundance sparsity constraints,” in Proc. IEEE IGARSS, Milan,
Italy, Jul. 26–31, 2015, pp. 1929–1932.
[21] M. Selva, B. Aiazzi, F. Butera, L. Chiarantini, and S. Baronti, “Hypersharpening:
A first approach on SIM-GA data,” IEEE J. Sel. Topics Appl. Earth Observ.,
vol. 8, no. 6, pp. 3008–3024, Jun. 2015.
[22] M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and J. F. Huntington, “ICE: A statistical approach to identifying endmembers in hyperspectral
images,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 10, pp. 2085–2095, Oct.
2004.
[23] C.-Y. Chi, W.-C. Li, and C.-H. Lin, Convex Optimization for Signal Processing
and Communications: From Fundamentals to Applications. CRC Press, Boca
Raton, FL, 2017.
[24] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,”
Foundat. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.
[25] P.-A. Thouvenin, N. Dobigeon, and J.-Y. Tourneret, “Hyperspectral unmixing
with spectral variability using a perturbed linear mixing model,” IEEE Trans.
Signal Process., vol. 64, no. 2, pp. 525–538, Oct. 2016.
[26] L. Wald, T. Ranchin, and M. Mangolini, “Fusion of satellite images of different
spatial resolutions: Assessing the quality of resulting images,” Photogramm. Eng.
Remote Sens., vol. 63, no. 6, pp. 691–699, 1997.
[27] C.-H. Lin, F. Ma, C.-Y. Chi, and C.-H. Hsieh, “A convex optimization based
coupled non-negative matrix factorization algorithm for hyperspectral and multispectral data fusion,” accepted for publication as a regular paper in IEEE
Trans. Geosci. Remote Sensing.
[28] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag.,
vol. 19, no. 1, pp. 44–57, Jan. 2002.
[29] Q. Wei, J. M. Bioucas-Dias, N. Dobigeon, J. Y. Tourneret, M. Chen, and S. Godsill, “Multiband image fusion based on spectral unmixing,” IEEE Trans. Geosci.
Remote Sens., vol. 54, no. 12, pp. 7236–7249, Dec. 2016.
[30] C.-H. Lin, W.-K. Ma, W.-C. Li, C.-Y. Chi, and A. Ambikapathi, “Identifiability
of the simplex volume minimization criterion for blind hyperspectral unmixing:
The no-pure-pixel case,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 10, pp.
5530–5546, Oct. 2015.
[31] J. Chen, C. Richard, and P. Honeine, “Nonlinear estimation of material abundances in hyperspectral images with 1-norm spatial regularization,” IEEE
Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2654–2665, Jun. 2014.
[32] C.-H. Lin, C.-Y. Chi, Y.-H. Wang, and T.-H. Chan, “A fast hyperplane-based
minimum-volume enclosing simplex algorithm for blind hyperspectral unmixing,”
IEEE Trans. Signal Process., vol. 64, no. 8, pp. 1946–1961, Apr. 2016.
[33] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 1.21,” http://cvxr.com/cvx/, Apr. 2011.
[34] E. Wycoff, T. H. Chan, K. Jia, W.-K. Ma, and Y. Ma, “A non-negative sparse
promoting algorithm for high resolution hyperspectral imaging,” in Proc. IEEE
ICASSP, Vancouver, Canada, May 26–31, 2013, pp. 1409–1413.
[35] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. Prentice Hall Englewood Cliffs, NJ, 1989.
[36] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process., vol. 13, no. 10, pp. 1327–
1344, Oct. 2004.
[37] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimization with
biconvex functions: A survey and extensions,” Mathematical Methods of Operations Research, vol. 66, no. 3, pp. 373–407, 2007.
[38] ROSIS Free Pavia University Data. [Online]. Available: http://www.ehu.eus/
ccwintco/index.php?title=Hyperspectral Remote Sensing Scenes.
[39] R. W. Basedow, D. C. Carmer, and M. E. Anderson, “Hydice system: Implementation and performance,” Proc. SPIE, vol. 2480, pp. 258–267, Jun. 1995.
[40] AVIRIS Free Standard Data Products. [Online]. Available: http://aviris.jpl.
nasa.gov/html/aviris.freedata.html.
[41] C. Lanaras, E. Baltsavias, and K. Schindler, “Hyperspectral superresolution by
coupled spectral unmixing,” in Proc. IEEE ICCV, Santiago, Chile, Dec. 11–18,
2015, pp. 3586–3594.
[42] Q. Zhang, Y. Liu, R. S. Blum, J. Han, and D. Tao, “Sparse representation based
multi-sensor image fusion: A review,” arXiv preprint arXiv:1702.03515, 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 藉由峰度最大化的盲蔽信號源分離演算法與其在無線通訊之應用
2. 藉由峰度最大化於類同步改良式多載波-分碼多工接取系統之盲蔽多用戶偵測
3. 藉由峰度最大化於傳送分集多載波-分碼多工接取系統之盲蔽空時解碼演算法
4. 使用峰度最大化於盲蔽訊號分離之多級通道限制演算法
5. 使用基於高階統計量之反濾波器準則於非同步多重速率之直接序列/分碼多工系統的空-時盲蔽等化
6. 在未知塊狀衰減通道中OSTBC-OFDM系統之最大勢然偵測
7. 應用於生醫訊號分析之確定性盲訊號抽取
8. 藉由峰度最大化於同步空時編碼-多載波-分碼多工接取系統之盲蔽空時解碼演算法
9. 在多路徑下使用峰度最大化之盲蔽波束成型演算法於正交分頻多工系統
10. 用於超寬頻多路徑通道中具有路徑安排策略之基於最大訊號雜訊比例之空時選擇性犁耙接收機
11. 盲蔽訊號源分離演算法之研究:比較、分析、與應用
12. 藉由子載波平均之半盲蔽通道估測演算法及其在多用戶正交分頻多工系統中波束成型與預先波束成型之應用
13. 基於凸分析之盲蔽非負訊號源分離於生物醫學與超光譜影像分析
14. 基於子載波平均及藉由峰度最大化之盲蔽波束成型於多用戶正交分頻多工系統
15. 使用峰度最大化於非同步多速率之直接序列/分碼多工存取系統的盲蔽多用戶檢測
 
* *