帳號:guest(13.59.58.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林威廷
作者(外文):Lin, Wei-Ting.
論文名稱(中文):大規模多輸入多輸出之波束-頻域索引調變
論文名稱(外文):Beam-Frequency Index Modulation For Massive MIMO System
指導教授(中文):吳仁銘
指導教授(外文):Wu, Jen-Ming
口試委員(中文):桑梓賢
伍紹勳
口試委員(外文):Sang, Zi-Xian
Wu, Shao-Xun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:104064513
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:31
中文關鍵詞:多天線列陣系統波束成型索引調變空間調變正交分頻多工索引調變波束索引空間調變
外文關鍵詞:Massive-MIMOBeamformingIndex ModulationSpatial ModulationFrequency Division Multiplexing Index ModulationBeam-Index Modulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:339
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來多天線列陣系統技術逐漸發展,在下世代行動通訊(第五代行動通訊,5G)中,大規模多天線列陣也成為一項前景看好的技術。大量的天線單元提供了更多的天線增益,也讓波束成形技術有了發展機會。下世代通訊需要靈活適應的系統,來處理高傳輸速率、節能等需求,然而傳統的多天線系統較為僵硬,無法同時達成以上需求。在目前研究中,索引調變是一項受矚目多天線技術,相比於傳統的傳輸模式,它具有高能源效率以及靈活度,目前有幾種實行方向:空間調變、正交分頻多工索引調變以及波束索引空間調變。空間調變是以傳送天線作為索引,根據不同的輸入字元,使用不同的傳送天線組合,因此不同的傳送模式就能代表不同的字元;而交分頻多工索引調變以及波束索引空間調變則是分別以子載波和傳送波束作為索引。
本論文中,我們結合波束索引空間調變及正交分頻多工索引調變的特色,提出「波束-頻域索引調變」以及「差分波束-頻域索引調變」,此技術解決了傳統傳輸模式靈活度不足的問題,並且充分利用多天線通道的特性,拓展自由度。經過模擬及分析發現,此技術除了擁有高能量效率,在低調變階數時也有更好的頻譜效率,除此之外,也能讓使用者根據傳輸環境與需求,選擇適用的系統參數配置。
In recent years, multi-input multi-output(MIMO) antenna is becoming a important
wireless communication technology and several standard have incorporated MIMO technique
such as LTE and Wi-Fi. Massive MIMO is a MIMO system with large-scale antenna which
improves the scattering environment, spectral efficiency and the link reliability.
To exploit the advantage of massive MIMO, Index Modulation (IM) becomes a potential
scheme for the next generation communication system. Index Modulation (IM) improves
the energy efficiency and provides flexible system parameter to meet different application
demands. Spatial Modulation (SM) and orthogonal frequency division multiplexing-index
modulation (OFDM-IM) are two kind of IM. The former applies “index” in dimension of
antennas, and OFDM-IM is applied in dimension of subcarriers. We modify SM and combine
the features of OFDM-IM, beamforming technology and MIMO systems to propose IM
technologies named as “Bean-Frequency Index Modulation” (BFIM) and “Differential Bean-
Frequency Index Modulation” (D-BFIM).
We apply analysis of energy and spectral efficiency of BFIM scheme and compare the
bit error rate (BER) performance with conventional MIMO. Our results show that BFIM
and D-BFIM have a better energy efficiency, and have a good BER performance in the high
SNR region. To make a flexible system, we also provide a design rule for BFIM to choose
and meet the different requirements.
1 INTRODUCTION 1
1.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Prior Arts and Paper Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 BACKGROUNDS 5
2.1 Massive MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Generalized Spatial Modulation (GSM) . . . . . . . . . . . . . . . . . . . . . 5
2.3 Orthogonal Frequency Division Multiplexing Index Modulation (OFDM-IM) 7
2.4 Beam-Index Spatial Modulation (BISM) . . . . . . . . . . . . . . . . . . . . 8
3 PROPOSED BEAM-FREQUENCY INDEX MODULATION (BFIM) 10
ii
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Beam-Frequency Index Modulation (BFIM) . . . . . . . . . . . . . . . . . . 11
3.3 BFIM Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Differential Beam-Frequency Index Modulation(D-BFIM) . . . . . . . . . . . 16
3.5 BFIM with Maximum Likelihood (ML) Detector . . . . . . . . . . . . . . . . 19
4 SIMULATION RESULTS 21
4.1 Spectral and Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Bit Error Rate (BER) Performance . . . . . . . . . . . . . . . . . . . . . . . 24
5 CONCLUSIONS 28
[1] E. Basar, “On multiple-input multiple-output ofdm with index modulation for next
generation wireless networks,” IEEE Transactions on Signal Processing, vol. 64, no. 15,
pp. 3868–3878, Aug 2016.
[2] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K.
Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5g
cellular: It will work!” IEEE Access, vol. 1, pp. 335–349, 2013.
[3] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,”
IEEE Communications Magazine, vol. 49, no. 6, pp. 101–107, June 2011.
[4] W. Roh, J. Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar,
“Millimeter-wave beamforming as an enabling technology for 5g cellular communica-
tions: theoretical feasibility and prototype results,” IEEE Communications Magazine,
vol. 52, no. 2, pp. 106–113, February 2014.
[5] R. Mesleh, S. Ganesan, and H. Haas, “Impact of channel imperfections on spatial mod-
ulation ofdm,” pp. 1–5, Sept 2007.
[6] M. D. Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spatial modulation for
generalized mimo: Challenges, opportunities, and implementation,” Proceedings of the
IEEE, vol. 102, no. 1, pp. 56–103, Jan 2014.
29
[7] A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “Generalised spatial modulation,”
pp. 1498–1502, Nov 2010.
[8] A. Younis, D. A. Basnayaka, and H. Haas, “Performance analysis for generalised spatial
modulation,” pp. 1–6, May 2014.
[9] H. H. Abdelhamid Younis, Raed Mesleh and P. M. Grant, “Reduced complexity sphere
decoder for spatial modulation detection receivers,” IEEE Communications Society sub-
ject matter experts for publication, 2010.
[10] M. Z. Shijian Gao and X. Cheng, “Precoded index modulation for multi-input multi-
output ofdm,” IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, vol. 17,
no. 1, 2018.
[11] P. Henarejos and A. I. Pérez-Neira, “Capacity analysis of index modulations over spatial,
polarization, and frequency dimensions,” IEEE TRANSACTIONS ON COMMUNICA-
TIONS, vol. 65, no. 12, 2017.
[12] M. D. R. N. Serafimovski1, S. Sinanovic and H. Haas, “Multiple access spatial modula-
tion,” EURASIP J. Wireless Commun. and Net-working, 2012.
[13] E. Başar, “Multiple-input multiple-output ofdm with index modulation,” IEEE Signal
Processing Letters, vol. 22, no. 12, pp. 2259–2263, Dec 2015.
[14] S. S. D. Tsonev and H. Haas, “Enhanced subcarrier index modulation (sim) ofdm,”
Proc. IEEE GLOBECOM, pp. 728–732, 2011.
[15] L. U. S. O. E. Erik G. Larsson, ISY and S. T. L. M. Fredrik Tufvesson, Lund University,
“Massive mimo for next generation wireless systems,” IEEE Communications Magazine,
pp. 186 – 195, Feb 2014.
30
[16] A. R. Mohamed BOULOUIRD and M. M. HASSANI, “Pilot contamination in multi-cell
massive-mimo systems in 5g wireless communications,” 3rd International Conference on
Electrical and Information Technologies ICEIT, 2017.
[17] E. G. L. C. Y. Meysam Sadeghi∗†, Emil Björnson† and T. L. Marzetta‡, “Multigroup
multicast precoding in massive mimo,” IEEE, 2017.
[18] E. E.Basar, U.Aygolu and H. V. Poor, “Orthogonal frequency division multiplexing with
indexing,” Proc. IEEE GLOBE-COM, pp. 4741–4746, Dec 2012.
[19] A. C. B. Chakrapani, T. Lakshmi Narasimhan, “Generalized space-frequency index
modulation: Low-complexity encoding and detection,” IEEE Globecom Workshops,
2015.
[20] P. Henarejos and A. I. Pérez-Neira, “Capacity analysis of index modulations over spatial,
polarization, and frequency dimensions,” IEEE TRANSACTIONS ON COMMUNICA-
TIONS, vol. 65, no. 12, 2017.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *