|
[1] S. Yang, P. Luo, C. C. Loy, and X. Tang, “WIDER FACE: A face detection benchmark,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las Vegas, NV, USA, Jun. 2016, pp. 5525–5533. [2] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using multitask cascaded convolutional networks,” IEEE Signal Process. Lett., vol. 23, no. 10, pp. 1499–1503, Oct. 2016. [3] C. Zhu, Y. Zheng, K. Luu, and M. Savvides, “CMS-RCNN: Contextual multi-scale region-based cnn for unconstrained face detection,” arXiv:1606.05413. [4] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection with discriminatively trained part-based models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–1645, Sept. 2010. [5] S. Yang, Y. Xiong, C. C. Loy, and X. Tang, “Face detection through scale-friendly deep convolutional networks,” arXiv:1706.02863. [6] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Honolulu, HI, USA, Jul. 2017. pp. 2117–2125. [7] P. Hu, and D. Ramanan, “Finding tiny faces,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Honolulu, HI, USA, Jul. 2017. pp. 951–959. [8] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 3730–3738. [9] S. Zhu, S. Liu, C. C. Loy, and X. Tang, “Deep cascaded bi-network for face hallucination,” in Proc. Eur. Conf. Comput. Vis., Oct. 2016. pp. 614–630. [10] H. Bin, C. Weihai, W. Xingming, and L. Chun-Liang, “High-quality face image sr using conditional generative adversarial networks,” arXiv:1707.00737. [11] R. Dahl, M. Norouzi, and J. Shlens, “Pixel recursive super resolution,” in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 5439–5448. [12] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017. [13] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based object detectors with online hard example mining,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las Vegas, NV, USA, Jun. 2016, pp. 761–769. [14] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 640–651, Apr. 2017. [15] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. Int. Conf. Learn. Representations., 2015 [16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las Vegas, NV, USA, Jun. 2016, pp. 770–778. [17] C. Dong, C. C. Loy, K. He and X. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 2, pp. 295–307, Feb. 2016. [18] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution convolutional neural network,” in Proc. Eur. Conf. Comput. Vis., Oct. 2016, pp. 391–407. [19] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using very deep convolutional networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las Vegas, NV, USA, Jun. 2016, pp. 1646–1654. [20] W. S. Lai, J. B. Huang, N, Ahuja, and M. H. Yang, “Deep laplacian pyramid networks for fast and accurate super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Honolulu, HI, USA, Jul. 2017. pp. 624–632. [21] J. Wu, S. Ding, W. Xu, and H. Chao, “Deep joint face hallucination and recognition,” arXiv:1611.08091, 2016 [22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680. [23] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv:1701.07875, 2017. [24] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved training of wasserstein gans,” arXiv:1704.00028, 2017. [25] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Honolulu, HI, USA, Jul. 2017. pp. 4681–4690. [26] X. Yu, and F. Porikli, “Ultra-resolving face images by discriminative generative networks,” in Proc. Eur. Conf. Comput. Vis., Oct. 2016, pp. 318–333.
|