帳號:guest(3.148.106.105)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡函彣
作者(外文):Tsai, Han-Wen
論文名稱(中文):在使用空間調變技術的巨量天線多重輸入多重輸出系統利用壓縮感測技術進行稀疏通道盲估計之研究
論文名稱(外文):A Study of Blind Sparse Channel Estimation Based on Compressed Sensing for Massive MIMO Systems with Spatial Modulation
指導教授(中文):蔡育仁
指導教授(外文):Tsai, Yuh-Ren
口試委員(中文):黃政吉
梁耀仁
口試委員(外文):Huang, Jeng-Ji
Liang, Yao-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:104064504
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:48
中文關鍵詞:空間調變技術巨量天線多重輸入多重輸出壓縮感測通道估計
外文關鍵詞:Spatial ModulationMassive MIMOCompressed SensingChannel Estimation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:274
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,空間調變技術的巨量天線多重輸入多重輸出系統利已成為熱門的研究目標。因為空間調變技術可使在傳送端只有一根天線發射訊號的情況下達到很高的傳輸速率。然而,對於傳統空間調變技術的通道估計,所有傳送天線必須依序的傳送導航訊號,此情況非常消耗大量的時間和大量的導航訊號,尤其在巨量天線多重輸入多重輸出系統更是嚴重。
在我的研究中,我們利用通道間的相關性,會使通道在角域上有稀疏的特性在,因此提出了一種使用壓縮感知技術的通道估計方法,以利於改善導航訊號消耗和時間效率。所以我們只利用一部分的傳送天線去發送導航訊號就可以估計整個完整的通道環境。此外,我們還提出了盲估計之通道估測方法,以利於進一步減少導航訊號的消耗。在此方法中,我們利用已經被解出的接受訊號來估計整個通道。所以在下一次更新通道時,就可以不需要使用導航訊號。就模擬結果顯示,在高訊雜比之下,我們提出壓縮感知技術的通道估計方法比傳統的估計方法還要好。在低訊雜比之下,因為雜訊的干擾影響太大,越多的導航訊號還是有助於通道估計。另外比較盲估計的方法,在相同的傳輸量比較之下,提出的盲估計方法的傳輸性能會優於傳統的估計方法,結果證明我們提出的通道估計方法更優於傳統的估計方法。
Massive multiple-input multiple-output (MIMO) with spatial-modulation (SM), only one active transmitted antenna at any time instance, recently has been proposed. However, for conventional channel estimation (CCE) of SM, all transmitted antennas have to be sequentially activated for sending pilots, which consumes large time and pilots. In this work, for the limited scatters environment, by exploiting the channel correlation, which contribute to the sparse channel in angular domain, we propose a channel estimation method using compressed sensing (CS) technology, named CS-based channel estimation (CS-based CE), to improve pilot consumption and time efficiency. Specifically, only the part of transmitted antennas is used to send pilots, which can estimate entire channel information between transmitter and receiver. In addition, we also propose the blind CS-based channel estimation method to further reduce pilot consumption. In this proposed method, we used enough detected symbols to estimate channel for updating channel information in time-variant systems. Simulation results show that the signal detection performance of proposed CS-based CE is better than CCE at high SNR. To compare with the same throughput, the BER performance of the proposed blind CS-based CE is better than CCE and CS-based CE.
ABSTRACT........II
摘要........III
誌謝........IV
Table of Contents........V
LIST OF FIGURES........VI
LIST OF TABLES........VIII
Chapter 1 Introduction........1
1.1 General background information........1
1.2 Literature review........2
Chapter 2 Spatial Modulation for Massive MIMO........5
2.1 Spatial modulation MIMO systems........5
2.2 Transmitter for SM........6
2.3 Receiver for SM ---compressed sensing........8
Chapter 3 MIMO Multipath Channel Model........11
3.1 Channel model in spatial domain........11
3.2 Channel model in angular domain........12
3.3 The relation between phase coherence and distance between antennas........15
Chapter 4 Proposed Channel Estimation Scheme........17
4.1 System model........17
4.2 Proposed CS-based channel estimation........21
4.3 Proposed blind CS-based channel estimation........25
4.4 Complexity of SOMP and LS........29
Chapter 5 Simulation results........30
5.1 Theoretical analysis of channel estimation errors........30
5.2 Performance for proposed CS-based channel estimation........33
5.3 Performance for blind CS-based channel estimation........38
Chapter 6 Conclusion........44
References........45

[1] J. Mietzner, et al., “Multiple-Antenna Techniques for Wireless Communications — A Comprehensive Literature Survey,” IEEE Communications Surveys & Tutorials, vol. 11, pp87-105, 2009.
[2] E. Dahlman, S. Parkvall, J. Skold, and P. Beming, 3G Evolution HSPA and LTE for Mobile Broadband. New York: Academic, 2008.
[3] T. L. Mazetta and B. M. Hochwald, “Capacity of a mobile multipleantenna communication link in Rayleigh flat fading,” IEEE Trans. Inform. Thoery, vol. 45, pp. 139–157, Jan. 1999.
[4] Larsson, E.G., Edfors, O., Tufvesson, F., et al.: ‘Massive MIMO for next generation wireless systems’, IEEE Commun. Mag., vol. 52, pp. 186–195, 2014.
[5] Andrews, J.G., Buzzi, S., Choi, W., et al.: ‘What will 5G be?’, IEEE J. Sel. Areas Commun., vol. 32, pp. 1065–1082, 2014.
[6] R. Mesleh, H. Haas, Y. Lee, and S. Yun,“Interchannel interference avoidance in mimo transmission by exploiting spatial information," in Proc. PIMRC’05, Sept. 2005.
[7] S. Yong and C. Chong, “An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges,” EURASIP J. Wireless Commun. Netw., vol. 2007, no. 1, pp. 50–50, 2007.
[8] R. Y. Mesleh, H. Haas, S. Sinanovi’c, C. W. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2241, July 2008.
[9] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “Space shift keying modulation for MIMO channels”, IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3692-3703, July 2009.
[10] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Generalized space shift keying modulation for MIMO channels,” in Proc. IEEE Personal, Indoor and Mobile Radio Communications. 2008
[11] A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “Generalized Spatial Modulation,” Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2010.
[12] Zhen Gao, Linglong Dai, Chenhao Qi, Chau Yuen, and Zhaocheng Wang ,“Near-Optimal Signal Detector Based on Structured Compressive Sensing for Massive SM-MIMO,” IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 1860-1865, Feb. 2017.
[13] C. Yu et al., “Compressed sensing detector design for space shift keying in MIMO systems,” IEEE Commun. Lett., vol. 16, no. 10, pp. 1556–1559, Oct. 2012.
[14] W. Liu, N. Wang, M. Jin, and H. Xu, “Denoising detection for the generalized spatial modulation system using sparse property,” IEEE Commun. Lett., vol. 18, no. 1, pp. 22–25, Jan. 2014.
[15] Mark A. Davenport, and Michael B. Wakin, “Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property,” IEEE Trans. Inform. Thoery, vol. 56, no. 9, pp. 4395-4401, Sept. 2010.
[16] Sergey L. Loyka, “Channel Capacity of MIMO Architecture Using the Exponential Correlation Matrix,” IEEE Commun. Lett., vol. 5, no. 9, pp. 369-371, Sept. 2001.
[17] Yaping Cui, and Xuming Fang, “Performance Analysis of Massive Spatial Modulation MIMO in High-Speed Railway,” IEEE Trans. Veh. Technol., vol. 65, no. 11, pp. 8925 – 8932, Nov. 2016.
[18] Xiping Wu, Holger Claussen, Marco Di Renzo, and Harald Haas, “Channel Estimation for Spatial Modulation,” IEEE Trans. Commun., vol. 62, no. 12, pp. 4362 – 4372, Dec. 2014.
[19] M. Di Renzo, H. Haas, and P. M. Grant, “Spatial Modulation for Multiple-Antenna Wireless Systems – A Survey”, IEEE Commun. Magazine, vol. 49, no. 12, pp. 182-191, Dec. 2011.
[20] Emmanuel J. Cand`es. “The restricted isometry property and its implications for compressed sensing,” Comptes Rendus Mathematique, 2008.
[21] D. Tse and P. Viswanath,” Fundamentals of Wireless Communication. Cambridge,” U.K.: Cambridge Univ. Press, 2005
[22] P. Dent, G. Bottomley and T. Croft, "Jakes fading model revisited," IEEE Electronics Letters, vol. 39, no. 13, pp.1162-1163, Jun. 1993.
[23] J. A Tropp, A C. Gilbert, and M. 1. S trauss, "Simultaneous sparse approximation via greedy pursuit", in Proc. ICASSP, 2005.
[24] Garvesh Raskutti and Michael Mahoney, "Statistical and algorithmic perspectives on randomized sketching for ordinary least-squares”, in Proc. ICML, 2015.
[25] J. Tropp and A. C. Gilbert, “Hybrid matching pursuit for distributed through-wall radar imaging,” IEEE Trans. Inf. Theory, vol. 63, no.4, pp. 1701–1711, April 2015
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *