帳號:guest(3.17.157.6)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊士賢
作者(外文):Yang, Shih-Hsien
論文名稱(中文):全二維穿隧電晶體與非揮發性記憶體之研究
論文名稱(外文):The Study of All 2D Tunneling Field Effect Transistors and Non-Volatile Memories
指導教授(中文):連振炘
林彥甫
指導教授(外文):Lien, Chen-Hsin
Lin, Yen-Fu
口試委員(中文):張鼎張
賴朝松
侯拓宏
口試委員(外文):Chang, Ting-Chang
Lai, Chao-Sung
Hou, Tuo-Hung
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063871
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:76
中文關鍵詞:二維材料二硫化鉬光偵測器二硒化錸穿隧電晶體非揮發性記憶體
外文關鍵詞:2D materialsMoS2ReSe2TFETmemorysensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:63
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著摩爾定律推進下,每兩年電晶體數量將會倍增,至今電晶體特徵長度為5奈米,已經不到50個矽原子長度,未來電晶體微縮已越來越困難,除了更激進地縮小電晶體外,選擇其他非傳統矽材料結構電晶體以及尋找其他應用上的改進成為後摩爾時代的兩個選擇方向,而本文將在後摩爾時代的時空背景下,尋求二維材料在更改傳統電晶體型式的低功耗電晶體與多功能應用上將可能扮演的角色。
在現代積體電路中,隨著電晶體封裝密度的增加,功耗成爲一個關鍵問題。穿隧場效電晶體具有帶間穿隧特性,被認爲是一種可替代傳統電晶體的電子結構,以減少電晶體關閉時的能量損失,並可在室溫下實現快速的電晶體開關。最近,在VdW HS(hetero-structures, HS)中的半導體材料,證實了能帶對能帶的穿隧行爲。形成能帶對能帶的穿隧原因是在異質介面附近發生了明顯的能帶彎曲,導致載子積累。在本工作中,爲了研究第三型(type-III)電晶體中的電荷傳輸,我們採用相同的能帶彎曲概念來製造凡得瓦黑磷(BP)/二硫化鉬(MoS2)HS。通過分析其電性能的溫度依賴性,我們仔細地排除了金屬-半導體接觸電阻的貢獻,提高了我們對二維第三型電晶體中載子注入的理解。BP/MoS2 HS表現出負微分電阻(NDR)和逆向偏壓下大的穿隧電流,有力地提供了能帶對能帶的穿隧證據。最後,我們還設計了一種基於離子液體閘極HS的電晶體,該電晶體證明了SS可以成功地克服60 mV/dec.的物理極限(達到42 mV/dec.)。這項工作提高了我們對分層HS中電荷傳輸的理解,並有助於提高下一代奈米電子產品的能源效率。
隨著物聯網(IoT)概念的蓬勃發展,多功能整合在一個元件的設計,在節約成本、設備小型化、節能等方面受到越來越多的關注。自石墨烯(Graphene, Gr)首次報導以來,二維材料因其獨特的原子層結構和凡得瓦相互作用,被認為是未來電子應用的候選材料。在這裡,我們演示了一個全二維二硒化錸(ReSe2)/氮化錋(hBN)/石墨烯(Gr) HS通過垂直耦合一個ReSe2場效電晶體和一個電荷儲存元件。這種獨特的HS依靠凡得瓦力垂直堆疊的新穎結構,可以實現優良的非揮發性記憶體、光電憶阻器以及可程式化處裡的訊號處理電路。ReSe2/hBN/Gr HS的記憶體在寫入與抹除電流比(> 105)和相當長的持久性(>10,000秒)內提供了優異記憶體性能和連續可調記憶體狀態。此外,全二維HS設計使得光可以穿透Gr接觸層,到達光敏感度高的ReSe2通道,從而使其具有低功耗的全可見光譜光電記憶體功能。更有趣的是,由於ReSe2具有雙極導電特性,ReSe2/hBN/Gr HS可以實現一個多功能的光可程式化的訊號處理電路,可用於反向器和倍頻器的應用上。最後,我們進一步提出了無消耗功耗的ReSe2/hBN/Gr HS影像儲存器的概念,簡化了典型的相機成像儲存系統,揭示了全二維HS電子在當今光電可程式化處理電路與光電資訊儲存系統領域的潛在應用。
According Moore's law, the number of transistors will double every two years, so far the characteristic length in transistor is 5 nm, which is less than 50 silicon atoms, future scaling in transistors has been more and more difficult. In addition to the scalling of transistors, choose other transistors with non-traditional structures and look for other improvements in applications as two options for the post-moore era. In this article, we explore the opportunities of 2D materials in low power transistors and multifunctional applications in the post-moore era.
In modern integrated circuits, power consumption becomes a key problem with the increase of transistor package density.Tunneling field effect transistors(TEETs) have the characteristics of inter-band tunneling, which is considered as an electronic structure that can replace the traditional transistors to reduce the energy loss when the transistors turn off, and can realize the fast switching of transistors at room temperature. Recently, semiconductor material from van der Waals (VdW) hetero-structures (HS) demonstrated band-to-band tunneling (BTBT). The formation of BTBT is due to the apparent band bending near the heterogeneous interface, leading to carrier accumulation. In this work, in order to study the charge transfer in type-III transistors, we use the same concept of band bending to produce VdW black phosphorus (BP)/ MoS2 HS. By analyzing the temperature dependence of its electrical properties, we carefully excluded the contribution of metal-semiconductor contact resistance and improved our understanding of carrier injection in 2D type-III transistors. BP/MoS2 HS exhibit negative differential resistance (NDR) and large tunneling current at reverse bias, providing strong evidence of BTBT. Finally, we design a transistor based on ionic liquid gate HS, which proves that the subthreshold swing (SS) can successfully overcome the physical limit of 60 mV/dec. (achieve 42 mV/dec.). This work improves our understanding of charge transfer in layered HS and contributes to the energy efficiency of next-generation nanoelectronics.
With the rapid development of the Internet of things (IoT) concept, multifunction integration in the design of a component has attracted more and more attention in cost saving, device miniaturization, energy saving and other aspects. Since Graphene (Gr) was first reported, two-dimensional materials are considered as candidate materials for future electronic applications due to their unique atomic layer structure and VdW interaction. Here, we demonstrated a 2D ReSe2/hBN/Gr HS through a vertical coupling a ReSe2 field-effect transistor and a Gr layer charge storage element. This unique HS relies on a novel vertical-stacked VdW structure to achieve excellent non-volatile memory, photo-detector, and light programmable signal processing circuits. The memory of ReSe2/hBN/Gr HS provides excellent memory performance and continuously adjustable memory state in the write and erase current ratio (ON/OFF ratio > 105) and considerable retention (>10,000 seconds). In addition, the full 2D HS design enables light to penetrate the contact layer of Gr and reach the ReSe2 channel, so that it has the function of fully visible spectral photoelectric memory with low power consumption. More interestingly, ReSe2/hBN/Gr HS can implement a multifunctional optical programmable signal processing circuit for inverters and frequency doubler applications due to its ambipolar conductivity. Finally, we further propose the concept of power-free ReSe2/hBN/Gr HS image storage, which simplifies the typical camera imaging storage system, and reveals the potential applications of 2D HS electronics in the fields of optoelectronic programmable processing circuits and image storage systems.
中文摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 xi
第一章緒論 1
1.1 半導體元件的發展與侷限 1
1.2 後摩爾時代的選擇 3
1.3 二維材料介紹 5
1.4 動機 7
1.5 論文結構 7
第二章 實驗 8
2.1 二維材料的製備方法與儀器介紹 8
2.1.1 基板清洗 8
2.1.2 機械剝離法 8
2.1.3 乾式轉移法 9
2.1.4 曝光顯影製程 10
2.1.5 電極製作 10
2.2 基於二維材料元件的量測方法與儀器介紹 12
第三章 超越互補式金氧半(CMOS): 黑磷/二硫化鉬(BP/MoS2) 穿隧電晶體之研究 14
3.1 引言 14
3.2 穿隧電晶體操作原理 16
3.2.1 穿隧二極體原理 16
3.2.2 穿隧電晶體操作原理 17
3.3.3 第三型接面材料的搭配 19
3.3 黑磷/二硫化鉬 (BP/MoS2) 穿隧電晶體的製備 21
3.4 各別材料之基本特性 21
3.41 黑磷之基本特性 21
3.42 二硫化鉬之基本特性 23
3.5 黑磷/二硫化鉬 (BP/MoS2) 異質接面結構 25
3.6 黑磷/二硫化鉬 (BP/MoS2) 異質接面的基本電性 25
3.7 黑磷/二硫化鉬 (BP/MoS2) 電晶體的通道主導驗證 27
3.7.1 Y-函數法: 27
3.7.2 二維熱電子發射分析: 28
3.8 黑磷/二硫化鉬 (BP/MoS2) 電晶體的傳輸特性與機制 30
3.9 變溫的傳輸特性與理論分析 33
3.10 溫度相依的黑磷/二硫化鉬凡德瓦異質結構 (BP/MoS2 VdW HS) 電晶體應用分析 36
3.11 頂閘極黑磷/二硫化鉬 (BP/MoS2) 穿隧電晶體之電性分析 38
3.12 本章小結 39
第四章 超越摩爾: 二硒化錸異質結構(ReSe2/hBN/Gr HS)之電學特性 40
4.1 引言 40
4.2 原理 41
4.2.1 浮閘極非揮發性記憶體 41
4.3 二硒化錸異質結構 (ReSe2/hBN/Gr HS) 多功能元件的製備方法 44
4.4 各別材料之基本特性 45
4.4.1 二硒化錸的基本特性 45
4.4.2 石墨烯的基本特性 47
4.4.3 氮化硼基本特性 47
4.5 二硒化錸異質結構 (ReSe2/hBN/Gr HS) 元件電性量測方法 48
4.6 二硒化錸異質結構 (ReSe2/hBN/Gr HS) 之結構 49
4.7 二硒化錸異質結構 (ReSe2/hBN/Gr HS) 之基本電性 49
4.8 電荷儲存後造成臨界電壓之偏移 50
4.9 二硒化錸異質結構 (ReSe2/hBN/Gr HS) 記憶體的操作方式與能帶 52
4.10 電荷保存能力與耐用測試 53
4.11 浮閘極非揮發性雙極性記憶體 54
4.12 本章小結 55
第五章 超越摩爾: 二硒化錸異質結構 (ReSe2/hBN/Gr HS) 之多功能特性 56
5.1 前言 56
5.2 原理 56
5.2.1 照光抹除記憶機制 56
5.3 照光下二硒化錸異質結構 (ReSe2/hBN/Gr HS) 多功能元件之結構 58
5.4 對不同光波長與光強度的辨別能力 58
5.5 照光時間對電流的變化 59
5.6 正負光導特性 60
5.7 光可編程化的電路 61
5.8 免電源的影像儲存系統 63
5.9 本章小結 65
第六章 結論與展望 66
6.1 主要研究成果總結 66
6.2 未來研究與展望 67
參考資料 69
1 Powell, J. R. The Quantum Limit to Moore's Law. Proc. IEEE 96, 1247-1248, (2008).
2 Waldrop, M. M. More than moore. Nature 530, 144-148, (2016).
3 Bohr, M. T. Logic Technology Scaling to Continue Moore's Law. 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), 1-3, (2018).
4 Lundstrom, M. Moore's law forever? Science 299, 210-211, (2003).
5 Arden, W. et al. More-than-Moore white paper. Version 2, 14, (2010).
6 Roy, K., Jung, B., Peroulis, D. & Raghunathan, A. Integrated systems in the more-than-moore era: designing low-cost energy-efficient systems using heterogeneous components. IEEE Design & Test 33, 56-65, (2013).
7 Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419-425, (2013).
8 Velický, M. & Toth, P. S. From two-dimensional materials to their heterostructures: An electrochemist's perspective. Appl. Mater. Today 8, 68-103, (2017).
9 Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329-337, (2011).
10 Esaki, L. New Phenomenon in Narrow Germanium p−n Junctions. Phys. Rev. 109, 603-604, (1958).
11 Zhang, C. et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Mater. 4, 015026, (2016).
12 Edmonds, M. T. et al. Creating a Stable Oxide at the Surface of Black Phosphorus. ACS Appl. Mater. Inter. 7, 14557-14562, (2015).
13 Bao, W., Cai, X., Kim, D., Sridhara, K. & Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 102, 042104, (2013).
14 Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372-377, (2014).
15 Na, J. et al. Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS nano 8, 11753-11762, (2014).
16 Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Physical Review B 83, 245213, (2011).
17 Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147-150, (2011).
18 Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111-5116, (2011).
19 Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805, (2010).
20 Li, S. L. et al. Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. Nano Lett. 13, 3546-3552, (2013).
21 Chang, H.-Y. et al. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7, 5446-5452, (2013).
22 Xu, Y. et al. Carrier mobility in organic field-effect transistors. J. Appl. Phys. 110, 104513, (2011).
23 Anwar, A., Nabet, B., Culp, J. & Castro, F. Effects of electron confinement on thermionic emission current in a modulation doped heterostructure. J. Appl. Phys. 85, 2663-2666, (1999).
24 Wu, X. et al. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys. Rev. Lett. 101, 026801, (2008).
25 Zhong, H. et al. Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations. Sci. Rep. 6, 21786, (2016).
26 Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Physical Review B 85, (2012).
27 Qiao, J., Kong, X., Hu, Z. X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475, (2014).
28 Lin, Y. F. et al. Origin of Noise in Layered MoTe2 Transistors and its Possible Use for Environmental Sensors. Adv. Mater. 27, 6612-6619, (2015).
29 Sangwan, V. K. et al. Low-frequency electronic noise in single-layer MoS2 transistors. Nano Lett. 13, 4351-4355, (2013).
30 Xie, X. J. et al. Low-Frequency Noise in Bilayer MoS2 Transistor. ACS Nano 8, 5633-5640, (2014).
31 Li, X. et al. Performance potential and limit of MoS2 transistors. Adv. Mater. 27, 1547-1552, (2015).
32 Na, J. et al. Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS Nano 8, 11753-11762, (2014).
33 Roy, T. et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9, 2071-2079, (2015).
34 Pezeshki, A., Shokouh, S. H. H., Nazari, T., Oh, K. & Im, S. Electric and photovoltaic behavior of a few‐layer α‐MoTe2/MoS2 dichalcogenide heterojunction. Adv. Mater. 28, 3216-3222, (2016).
35 Xu, J., Jia, J., Lai, S., Ju, J. & Lee, S. Tunneling field effect transistor integrated with black phosphorus-MoS2 junction and ion gel dielectric. Appl. Phys. Lett. 110, (2017).
36 Radisavljevic, B. & Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 12, 815-820, (2013).
37 Zhou, R., Ostwal, V. & Appenzeller, J. Vertical versus Lateral Two-Dimensional Heterostructures: On the Topic of Atomically Abrupt p/n-Junctions. Nano Lett. 17, 4787-4792, (2017).
38 Miao, J. S. et al. Vertically Stacked and Self-Encapsulated van der Waals Heterojunction Diodes Using Two-Dimensional Layered Semiconductors. ACS Nano 11, 10472-10479, (2017).
39 Liu, X. et al. Modulation of Quantum Tunneling via a Vertical Two-Dimensional Black Phosphorus and Molybdenum Disulfide p-n Junction. ACS Nano 11, 9143-9150, (2017).
40 Deng, Y. et al. Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8, 8292-8299, (2014).
41 Wang, F. et al. Tunable GaTe-MoS2 van der Waals p-n Junctions with Novel Optoelectronic Performance. Nano Lett. 15, 7558-7566, (2015).
42 Yan, X. et al. High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures. Adv. Sci. 5, 1700830, (2018).
43 Feng, Z. et al. Chemical sensing by band modulation of a black phosphorus/molybdenum diselenide van der Waals hetero-structure. 2D Mater. 3, (2016).
44 Wang, C. et al. Gate-tunable diode-like current rectification and ambipolar transport in multilayer van der Waals ReSe2/WS2 p-n heterojunctions. Phys. Chem. Chem. Phys. 18, 27750-27753, (2016).
45 Huo, N. et al. Tunable Polarity Behavior and Self-Driven Photoswitching in p-WSe2/n-WS2 Heterojunctions. Small 11, 5430-5438, (2015).
46 Flöry, N. et al. A WSe2/MoSe2 heterostructure photovoltaic device. Appl. Phys. Lett. 107, (2015).
47 Huo, N. et al. Novel optical and electrical transport properties in atomically thin WSe2/MoS2 p–n heterostructures. Adv. Electron. Mater. 1, 1400066, (2015).
48 Ahn, J. H. et al. Deterministic Two-Dimensional Polymorphism Growth of Hexagonal n-Type SnS2 and Orthorhombic p-Type SnS Crystals. Nano Lett. 15, 3703-3708, (2015).
49 Li, H. M. et al. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. Nat. Commun. 6, 6564, (2015).
50 Chen, P. et al. Gate tunable WSe2-BP van der Waals heterojunction devices. Nanoscale 8, 3254-3258, (2016).
51 Chen, P. et al. Gate tunable MoS2–black phosphorus heterojunction devices. 2D Mater. 2, (2015).
52 Ji, H., Wei, J. & Natelson, D. Modulation of the Electrical Properties of VO2 Nanobeams Using an Ionic Liquid as a Gating Medium. Nano Lett. 12, 2988-2992, (2012).
53 Chen, Z. et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424-428, (2011).
54 Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109, (2009).
55 Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722-726, (2010).
56 Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699-712, (2012).
57 Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666-669, (2004).
58 Yang, Z. & Hao, J. Recent Progress in Black-Phosphorus-Based Heterostructures for Device Applications. Small Methods 2, 1700296, (2018).
59 Jena, D. Tunneling Transistors Based on Graphene and 2-D Crystals. Proc. IEEE 101, 1585-1602, (2013).
60 Duan, X. et al. Atomically thin transition‐metal dichalcogenides for electrocatalysis and energy storage. Small Methods 1, 1700156, (2017).
61 El-Kady, M. F., Strong, V., Dubin, S. & Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326-1330, (2012).
62 Tang, Y. & Mak, K. F. Nanomaterials: 2D materials for silicon photonics. Nat. Nanotechnol. 12, 1121-1122, (2017).
63 Li, B. et al. Direct Vapor Phase Growth and Optoelectronic Application of Large Band Offset SnS2/MoS2 Vertical Bilayer Heterostructures with High Lattice Mismatch. Adv. Electron. Mater. 2, 1600298, (2016).
64 Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11, 42-46, (2016).
65 Yang, Z. et al. High-Performance Photoinduced Memory with Ultrafast Charge Transfer Based on MoS2/SWCNTs Network Van Der Waals Heterostructure. Small 15, e1804661, (2019).
66 Schneider, C., Glazov, M. M., Korn, T., Hofling, S. & Urbaszek, B. Two-dimensional semiconductors in the regime of strong light-matter coupling. Nat. Commun. 9, 2695, (2018).
67 Vega-Mayoral, V. et al. Charge trapping and coalescence dynamics in few layer MoS2. 2D Mater. 5, 015011, (2017).
68 Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Physical Review B 90, 205422, (2014).
69 Lin, P. et al. Piezo‐Phototronic Effect for Enhanced Flexible MoS2/WSe2 van der Waals Photodiodes. Adv. Funct. Mater. 28, 1802849, (2018).
70 Ovchinnikov, D. et al. Disorder engineering and conductivity dome in ReS2 with electrolyte gating. Nat. Commun. 7, 12391, (2016).
71 Corbet, C. M. et al. Field effect transistors with current saturation and voltage gain in ultrathin ReS2. ACS Nano 9, 363-370, (2015).
72 Liu, E. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. commun. 6, 6991, (2015).
73 Zhirnov, V. & Mikolajick, T. Flash memories. Nanoelectronics and Information Technology, 621, (2012).
74 Chen, A., Hutchby, J., Zhirnov, V. & Bourianoff, G. Emerging nanoelectronic devices. (2014).
75 Yang, S. et al. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 6, 7226-7231, (2014).
76 Yang, S. et al. High-performance few-layer Mo-doped ReSe2 nanosheet photodetectors. Sci. Rep. 4, 5442, (2014).
77 Jariwala, B., Thamizhavel, A. & Bhattacharya, A. ReSe2: a reassessment of crystal structure and thermal analysis. J. Phys. D: Appl. Phys. 50, 044001, (2016).
78 Lee, K. C. et al. Analog Circuit Applications Based on All‐2D Ambipolar ReSe2 Field‐Effect Transistors. Adv. Funct. Mater., 1809011, (2019).
79 Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042, (2016).
80 Lin, Y. & Connell, J. W. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4, 6908-6939, (2012).
81 Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947-950, (2012).
82 Wolverson, D., Crampin, S., Kazemi, A. S., Ilie, A. & Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: an anisotropic layered semiconductor. ACS Nano 8, 11154-11164, (2014).
83 Zhang, E. et al. Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High-Anisotropy ReSe2 Nanosheets. ACS Nano 10, 8067-8077, (2016).
84 Wang, S. et al. New Floating Gate Memory with Excellent Retention Characteristics. Adv. Electron. Mater. 5, 1800726, (2019).
85 Hou, X. et al. Charge-Trap Memory Based on Hybrid 0D Quantum Dot-2D WSe2 Structure. Small 14, e1800319, (2018).
86 Lee, Y. T. et al. Nonvolatile Charge Injection Memory Based on Black Phosphorous 2D Nanosheets for Charge Trapping and Active Channel Layers. Adv. Funct. Mater. 26, 5701-5707, (2016).
87 Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89-124, (2016).
88 Yu, S. M., Wu, Y., Jeyasingh, R., Kuzum, D. G. & Wong, H. S. P. An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation. IEEE Trans. Electron Devices 58, 2729-2737, (2011).
89 Tran, M. D. et al. Two-Terminal Multibit Optical Memory via van der Waals Heterostructure. Adv. Mater. 31, e1807075, (2019).
90 Hafeez, M., Gan, L., Li, H., Ma, Y. & Zhai, T. Chemical Vapor Deposition Synthesis of Ultrathin Hexagonal ReSe2 Flakes for Anisotropic Raman Property and Optoelectronic Application. Adv. Mater. 28, 8296-8301, (2016).
91 Zhang, Z. et al. Truly Concomitant and Independently Expressed Short‐and Long‐Term Plasticity in a Bi2O2Se‐Based Three‐Terminal Memristor. Adv. Mater. 31, 1805769, (2019).
92 Wang, S. et al. A MoS2/PTCDA Hybrid Heterojunction Synapse with Efficient Photoelectric Dual Modulation and Versatility. Adv. Mater. 31, e1806227, (2019).
93 Yang, S. H. et al. Atomically thin van der Waals tunnel field-effect transistors and its potential for applications. Nanotechnology 30, 105201, (2019).
94 Xiao, Z. & Huang, J. Energy‐efficient hybrid perovskite memristors and synaptic devices. Adv. Electron. Mater. 2, 1600100, (2016).
95 John, R. A. et al. Synergistic Gating of Electro‐Iono‐Photoactive 2D Chalcogenide Neuristors: Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity. Adv. Mater. 30, 1800220, (2018).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *