帳號:guest(18.220.181.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):游家睿
作者(外文):Yu, Chia-Jui
論文名稱(中文):氮化鎵之功率元件與射頻元件之研製
論文名稱(外文):Study and Fabrication of GaN Power Devices and RF Devices
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):蘇炎坤
張守進
劉文超
黃建璋
王郁琦
徐文慶
口試委員(外文):Su, Yan-Kuin
Chang, Shoou-Jinn
Liu, Wen-Chau
Huang, Jian-Jang
Wang, Yu-Chi
Hsu, Chuck
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063805
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:85
中文關鍵詞:氮化鎵功率元件射頻元件
外文關鍵詞:GaNPower DeviceRF Device
相關次數:
  • 推薦推薦:0
  • 點閱點閱:643
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
於本論文中,主要討論使用氮化鎵材料製作電子元件,根據其應用面向不同,而分為功率元件與射頻元件。在功率元件方面,分為超高耐壓二極體、「常開型」高電流高速電子遷移率電晶體、「常關型」高速電子遷移率電晶體;在射頻元件方面,則為高頻高速電子遷移率電晶體。
在元件製作過程中,皆嚴謹的依照下列四項步驟進行,包含氮化鎵材料磊晶結構設計、元件佈局設計、製程技術開發與優化、低頻直流、動態特性與高頻交流之量測分析討論等等,並且確認元件特性具有再現性。
而於本論文中,低頻直流元件部分,成功製作出高耐壓3000 V之功率二極體、高電流20 A之高速電子遷移率電晶體與閾值電壓為0.6 V之常關型電晶體;高頻交流元件部分則是製作出截止頻率(FT)> 10 GHz與最大震盪頻率(FMAX)>20 GHz之高頻高速電子遷移率電晶體,完整的討論利用氮化鎵材料所製作的兩端點與三端點元件製程技術與量測分析。
In this study, we mainly discuss the use of gallium nitride (GaN) materials to fabricate electronic devices, which are divided into DC power devices and RF devices by the different target applications. In terms of power devices requests, it is divided into high-breakdown voltage diodes, high-current high electron mobility transistors (HEMTs), and Normally-off HEMTs; for RF devices employment, we fabricate the high-frequency HEMTs.
In the device fabrication process, it was strictly in accordance with the following four steps, including GaN material epitaxial structure design, device layout design, process technology development and optimization, related characteristics with DC, dynamic, and RF measurement analysis. Finally, devices were confirmed that the related characteristics were reproducible.The part of power devices, which are power diodes and power HEMTs, achieved the reverse breakdown voltage of 3000 V, the 20 A forward current, and threshold voltage equals 0.6 V in different devices successfully; the high-frequency devices, on the other hand, accomplished the cut-off frequency over 10 GHz and the maximum oscillation frequency over 20 GHz.
This dissertation contains a complete discussion of the process technology and measurement analysis of the two-terminal and three-terminal devices fabricated by GaN materials.
摘 要 ii
Abstract iii
致 謝 iv
Contents vi
List of Figures ix
List of Tables xiii
Chapter 1 Introduction and Motivations 1
1-1 Dissertation Organization 1
1-2 Research motivation 1
1-3 Target Applications 3
1-3-1 High Power Applications 3
1-3-2 High Frequency applications 6
Chapter 2 Power Diode 9
2-1 Literature Review 9
2-2 Fundamental principles 11
2-2-1 Forward-bias characteristic 12
2-2-2 Reverse-bias Characteristic 16
2-2-3 Capacitance-Voltage Measurement 19
2-2-4 Baliga’s Figure of Merit 21
2-3 Design of Experiment 22
2-4 Fabrication Process 23
2-5 Results and Discussions 24
2-6 Summary 32
Chapter 3 Power HEMT 33
3-1 Literature Review 33
3-2 Fundamental principles 35
3-2-1 Forward-bias Characteristics 37
3-2-2 Reverse-bias Characteristics 39
3-2-3 Dynamic Characteristics 40
3-2-4 Normally-off HEMTs (P-GaN HEMTs) 41
3-3 Design of Experiment 43
3-3-1 Normally-on HEMT 43
3-3-2 Normally-off HEMT (P-GaN HEMT) 44
3-4 Fabrication Process 44
3-4-1 Normally-on HEMT 44
3-4-2 Normally-off HEMT (P-GaN HEMT) 46
3-5 Results and Discussions 47
3-5-1 Normally-on HEMTs 47
3-5-2 Normally-off HEMTs (P-GaN HEMT) 55
3-6 Summary 60
Chapter 4 RF HEMT 61
4-1 Literature Review 61
4-2 Fundamental Principles for RF Characteristics 64
4-2-1 Scattering Parameters 64
4-2-2 Figures of merit for Small-signal performance 64
4-2-3 Figures of merit for large-signal performance 66
4-3 Design of Experiment 67
4-4 Fabrication Process 69
4-5 Results and Discussions 71
4-6 Summary 78
Chapter 5 Conclusions 79
References 80
Published Lists 85

1. T. Kachi, T. "GaN devices for automotive application and their challenges in adoption." IEEE International Electron Devices Meeting (IEDM), 2018.
2. J. Roberts "Lateral GaN Transistors – A Replacement for IGBT devices in Automotive Applications." PCIM Europe, 2014.
3. T. Kachi, "GaN Power Device for Automotive Applications."Asia-Pacific Microwave Conference (Apmc)”: 923-925, 2014.
4. K. Nakatani, Y. Yamaguchi, Y. Komatsuzaki and S. Shinjo, "Millimeter-wave GaN Power Amplifier MMICs for 5G Application", 2019.
5. J. C. Mayeda, D.Y.C. Lie and J. Lopez "A Highly Efficient and Linear 15 GHz GaN Power Amplifier Design for 5G Communications." Proceedings of the 2017 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), 2017.
6. B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman, "The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMT's." IEEE Electron Device Lett. 21(6): 268-270, 2000.
7. K. Nomoto, Y. Hatakeyama, H. Katayose, N. Kaneda, T. Mishima, and T. Nakamura. "Over 1.0 kV GaN p-n junction diodes on free-standing GaN substrates." Physica Status Solidi a-Applications and Materials Science 208(7): 1535-1537, 2011.
8. I. C. Kizilyalli, T. Prunty, and O. Aktas, "4-kV and 2.8-m Omega-cm(2) Vertical GaN p-n Diodes With Low Leakage Currents." IEEE Electron Device Lett. 36(10): 1073-1075, 2015.
9. H. Ohta, N. Kaneda, F. Horikiri, Y. Narita, T. Yoshida, T. Mishima, and T. Nakamura, "Vertical GaN p-n Junction Diodes With High Breakdown Voltages Over 4 kV." IEEE Electron Device Lett. 36(11): 1180-1182, 2015.
10. J. S. Wang, R. McCarthy, C. Youtsey, R. Reddy, J. Q. Xie, E. Beam, L. Guido, L. Cao, and P. Fay, "Ion-Implant Isolated Vertical GaN p-n Diodes Fabricated with Epitaxial Lift-Off From GaN Substrates." Physica Status Solidi a-Applications and Materials Science 216(4), 2019.
11. H. Fukushima , S. Usami, M. Ogura, Y. Ando, A. Tanaka, M. Deki, M. Kushimoto, S. Nitta, Y. Honda, and H. Amano, "Vertical GaN p-n diode with deeply etched mesa and the capability of avalanche breakdown." Applied Physics Express 12(2), 2019.
12. Z. Y. Hu, K. Nomoto, B. Song, M. D. Zhu, M. Qi, M. Pan, X. Gao, V. Protasenko, D. Jena, and H. L. Grace Xing, "Near unity ideality factor and Shockley-Read-Hall lifetime in GaN-on-GaN p-n diodes with avalanche breakdown." Applied Physics Lett. 107(24), 2015.
13. Y. Xi, and E. F. Schubert. "Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method." Applied Physics Lett. 85(12): 2163-2165, 2004.
14. K. Nomoto, B. Song, Z. Y. Hu, M. D. Zhu, M. Qi, N. Kaneda, T. Mishima, T. Nakamura, D. Jena, and H. L. G. Xing "1.7-kV and 0.55-mΩ-cm2 GaN p-n Diodes on Bulk GaN Substrates With Avalanche Capability." IEEE Electron Device Lett. 37(2): 161-164, 2016.
15. K. Nomoto, Z. Hu, B. Song, M. Zhu, M. Qi, R. Yan, V. Protasenko, E. Imhoff, J. Kuo, N. Kaneda, T. Mishima, T. Nakamura, D. Jena, and H. L. G. Xing. "GaN-on-GaN p-n power diodes with 3.48 kV and 0.95 mΩ-cm2: a record high figure-of-merit of 12.8 GW/cm2." IEEE International Electron Devices Meeting (IEDM), 2015.
16. T. T. Kao, J. K., Y. C. Lee, M. H. Ji, T. Detchprohm, R. D. Dupuis, and S. C. Shen. "Homojunction GaN p-i-n Rectifiers with Ultra Ultra-low On On-state Resistance." CS MANTECH Conference, 2014.
17. Y. Hatakeyama, K. Nomoto, A. Terano, N. Kaneda, T. Tsuchiya, T. Mishima, and T. Nakamura "High-Breakdown-Voltage and Low-Specific-on-Resistance GaN p-n Junction Diodes on Free-Standing GaN Substrates Fabricated Through Low-Damage Field-Plate Process." Japanese Journal of Applied Physics 52(2), 2013.
18. S. Yoshida, J. Li, T. Wada, and H. Takehara. "High-power AlGaN/GaN HFET with a lower on-state resistance and a higher switching time for an inverter circuit." IEEE 15th International Symposium on Power Semiconductor Devices and Ics Proceedings, ISPSD: 58-61, 2003.
19. W. J. Chen, K. Y. Wong, and K. J. Chen. "Single-Chip Boost Converter Using Monolithically Integrated AlGaN/GaN Lateral Field-Effect Rectifier and Normally Off HEMT." IEEE Electron Device Lett. 30(5): 430-432, 2009.
20. A. M. Bouchour, A. Echeverri, O. Latry, P. Dherbécourt, and A. E. Oualkadi. "Modeling of Power GaN HEMT for Switching Circuits Applications Using Levenberg-Marquardt Algorithm."International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 2018.
21. D. W. Seo, H. G. Choi, J. Twynam, K. M. Kim, J. S. Yim, S. W. Moon, S. D. Jung, J. S. Lee, and S. W. D. Roh. "600 V-18 A GaN Power MOS-HEMTs on 150 mm Si Substrates With Au-Free Electrodes." IEEE Electron Device Lett. 35(4): 446-448, 2014.
22. Z. L. Zhang, G. H. Yu, X. D. Zhang, S. X. Tan, D. D. Wu, K. Fu, W. Huang, Y. Cai and B. S. Zhang. "16.8 A/600 V AlGaN/GaN MIS-HEMTs employing LPCVD-Si3N4 as gate insulator." Electronics Lett. 51(15): 1201-1202, 2015.
23. O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman. "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures." Journal of Applied Physics 87(1): 334-344, 2000.
24. Y. Saito, R. Tsurumaki, N. Noda, and K. Horio. "Analysis of Reduction in Lag Phenomena and Current Collapse in Field-Plate AlGaN/GaN HEMTs With High Acceptor Density in a Buffer Layer." IEEE Transactions on Device and Materials Reliability 18(1): 46-53, 2018.
25. G. Grecoa, F. Iucolanob, and F. Roccafortea. "Review of technology for normally-off HEMTs with p-GaN gate." Materials Science in Semiconductor Processing 78: 96-106, 2018.
26. M. Faqir, G. Verzellesi, A. Chini, F. Fantini, F. Danesin, G. Meneghesso, E. Zanoni, and C. Dua. "Mechanisms of RF current collapse in AlGaN-GaN high electron mobility transistors." IEEE Transactions on Device and Materials Reliability 8(2): 240-247, 2008.
27. M. V. Hove, X. W. Kang, S. Stoffels, D. Wellekens, N. Ronchi, R. Venegas, K. Geens, and S. Decoutere. "Fabrication and Performance of Au-Free AlGaN/GaN-on-Silicon Power Devices With Al2O3 and Si3N4/Al2O3 Gate Dielectrics." IEEE Transactions on Electron Devices 60(10): 3071-3078, 2013.
28. M. V. Hove, S. Boulay, S. R. Bahl, S. Stoffels, X. W. Kang, D. Wellekens, K. Geens, A. Delabie, and S. Decoutere. "CMOS Process-Compatible High-Power Low-Leakage AlGaN/GaN MISHEMT on Silicon." IEEE Electron Device Lett. 33(5): 667-669, 2012.
29. H. C. Chiu, Y. S. Chang, B. H. Li, H. C. Wang, H. L. Kao, C. W. Hu, and R. XUAN. "High-Performance Normally Off p-GaN Gate HEMT With Composite AlN/Al0.17Ga0.83N/Al0.3Ga0.7N Barrier Layers Design." IEEE Journal of the Electron Devices Society 6(1): 201-206, 2018.
30. Y. Zhou, Y. Z. Zhong, H. W. Gao, S. J. Dai, J. L. He, M. X. Feng, Y. F. Zhao, Q. Sun, D. S. An, and H. Yang. (2017). "p-GaN Gate Enhancement-Mode HEMT Through a High Tolerance Self-Terminated Etching Process." IEEE Journal of the Electron Devices Society 5(5): 340-346.
31. C. Kong, J. J. Zhou, Y. C. Kong, K. Zhang, T. S. Chen. "Enhancement-mode GaN HEMT Power Electronic Device with Low Specific On Resistance." 2017 14th China International Forum on Solid State Lighting (Sslchina) : International Forum on Wide Bandgap Semiconductors (IFWS): 183-185, 2017.
32. M. Tapajna, O. Hilt, E. Bahat-Treidel, J. Würfl, and J. Kuzmík. "Gate Reliability Investigation in Normally-Off p-Type-GaN Cap/AlGaN/GaN HEMTs Under Forward Bias Stress." IEEE Electron Device Lett. 37(4): 385-388, 2016.
33. R. H. Hao, K. Fu, G. H. Yu, W. Y. Li, J. Yuan, L. Song, Z. L. Zhang, S. C. Sun, X. J. Li, Y. Cai, X. P. Zhang, and B. S. Zhang. "Normally-off p-GaN/AlGaN/GaN high electron mobility transistors using hydrogen plasma treatment." Applied Physics Lett. 109(15), 2016.
34. C. S. Lee, W. C. Hsu, H. Y. Liu, T. T. Wu, W. C. Sun, S. Y. Wei and S. M. Yu. "Investigations on MgO-dielectric GaN/AIGaN/GaN MOS-HEMTs by using an ultrasonic spray pyrolysis deposition technique." Semiconductor Science and Technology 31(5), 2016.
35. H. C. Chiu, H. Y Wang, L. Y. Peng, H. C. Wang, H. L. Kao, C. W. Hu, and R. Xuan. "RF Performance of In Situ SiNx Gate Dielectric AlGaN/GaN MISHEMT on 6-in Silicon-on-Insulator Substrate." IEEE Transactions on Electron Devices 64(10): 4065-4070, 2017.
36. Y. S. Chiu, Q. H. Luc, Y. C. Lin, J. C. Huang, C. F. Dee, B. Y. Majlis, and E. Y. Chang. "Evaluation of AlGaN/GaN metal-oxide-semicondutor high-electron mobility transistors with plasma-enhanced atomic layer deposition HfO2/AlN date dielectric for RF power applications." Japanese Journal of Applied Physics 56(9), 2017.
37. D. L. Zhong, Z. Y. Zhang and L. M. Peng. "Carbon nanotube radio-frequency electronics." Nanotechnology 28(21), 2017.
38. P. Mlynek, J. Misurec, M. Koutny, P. Silhavy. "Two-port Network Transfer Function for Power Line Topology Modeling." Radioengineering 21(1): 356-363, 2012.
39. F. Tian and E. F. Chorz. "Improved Electrical Performance and Thermal Stability of HfO2/Al2O3 Bilayer over HfO2 Gate Dielectric AlGaN/GaN MIS-HFETs." Journal of the Electrochemical Society 157(5): H557-H561, 2010.
40. H. Yang, Y. Son, S. Choi, and H. Hwang. "Improved conductance method for determining interface trap density of metal-oxide-semiconductor device with high series resistance." Japanese Journal of Applied Physics Part 2-Letters & Express Lett. 44(46-49): L1460-L1462, 2005.
41. Y. Lu, B. C. Zhao, J. X. Zheng, H. S. Zhang, X. F. Zheng, X. H. Ma, Y. Hao, P. J. Ma. "A high efficiency C-band internally-matched harmonic tuning GaN power amplifier." Solid-State Electronics 123: 96-100, 2016.
42. M. S. Lee, D. H. Kim, S. Eom, H. Y. Cha, and K. S. Seo. "A Compact 30-W AlGaN/GaN HEMTs on Silicon Substrate With Output Power Density of 8.1 W/mm at 8 GHz." IEEE Electron Device Lett. 35(10): 995-997, 2014.
43. B. Y. Chou, W. C. Hsu, C. S. Lee, H. Y. Liu, and C. S. Ho. "Comparative studies of AlGaN/GaN MOS-HEMTs with stacked gate dielectrics by the mixed thin film growth method." Semiconductor Science and Technology 28(7), 2013.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *