|
[1] T. Yamauchi, “Prospect of embedded non-volatile memory in the smart society,” in 2015 IEEE International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), IEEE, 2015. p. 1-2. [2] International Roadmap for Device and System (IRDS), 2020 edition. [3] J. Welser, J. W. Pitera, and C. Goldberg, “Future Computing Hardware for AI,” in IEDM Tech Dig., 2018, p.26. [4] K. Ishimaru, “Future of Non-Volatile Memory -From Storage to Computing-,” in IEDM Tech Dig., 2019, p.11. [5] K. Matsubara, T. Nagasawa, Y. Kaneda, H. Mitani, T. Iwase, Y. Aoki, K. Hashimoto, T. Morioka, K. Maekawa, T. Ito, H. Kondo, and T. Kono, “A 2T-MONOS Embedded Flash Macro with 65-nm SOTB Technology Achieving 0.15-pJ/bit Read Energy with 80-MHz Access for IoT Applications,” IEEE Solid-State Circuits Lett., vol. 3, pp. 58–61, Mar. 2020. [6] S. Takagi, M. Noguchi, M. Kim, S.-H. Kim, C.-Y. Chang, M. Yokoyama, K. Nishi, R. Zhang, M. Ke, M. Takenaka, “III-V/Ge MOS device technologies for low power integrated systems,” Solid-State Electron., vol. 125, pp. 82–102, Nov. 2016. [7] C.-X. Xue and M. F. Chang, “Challenges in Circuit Designs of Nonvolatile-Memory based Computing-in-memory for AI Edge Devices,” in Proc. International SoC Design Conference (ISOCC), pp.164–165, 2019. [8] K. Nii, Y. Taniguchi, and K. Okuyama, “A Cost-Effective Embedded Nonvolatile Memory with Scalable LEE Flash®-G2 SONOS for Secure IoT and Computing-in-Memory (CiM) Applications,” in Proc. International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp.1-4, 2020. [9] N. Alam and M. Alam, “The Trend of Different Parameters for Designing Integrated Circuits from 1973 to 2019 and Linked to Moore's Law,” Aust. J. Eng. Innov. Technol., vol.2, no. 2, pp.16-23, 2020 [10] C. Kuo, T. Toms, N.M. Weidner, H. Choe, D. Shum, K.-M. Chang, and P. Smith, “A 512 KB flash EEPROM for a 32 bit microcontroller,” in Proc. IEEE Symp. VLSI Technol. Dig. Tech. Papers., Jun. 1991, pp. 87–88. [11] H. Hidaka, ed., “Embedded flash memory for embedded systems: technology, design for sub-systems, and innovations,” Springer, 2017. [12] T. Yamauchi, Y. Yamaguchi, T. Kono, and H. Hidaka, “Embedded flash technology for automotive applications,” in IEDM Tech. Dig., 2016, pp. 703–706. [13] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells - an overview,” Proceedings of the IEEE, vol. 85, no. 8, pp. 1248–1271, Aug. 1997. [14] R. Benz, E. Camerlenghi, A. Modelli, and A. Visconi, “Introduction to Flash memory,” Proceedings of the IEEE, vol. 91, no. 4, pp. 489–502, Apr. 2003. [15] S. Lai, “Tunnel oxide and ETOXTM Flash scaling limitation,” in Proc. Int. IEEE Nonvolatile Memory Technol. Conf., 1998, pp. 6–7. [16] G. Atwood, “Future directions and challenges for ETox Flash memory scaling,” IEEE Trans. Device Mater. Reliab., vol. 4, no. 3, pp. 301–305, Sep. 2004. [17] G. Molas, D. Deleruyelle, B. De Salvo, G. Ghibaudo, M. Gely, S. Jacob, D. Lafond, and S. Deleonibus, “Impact of few electron phenomena on floating-gate memory reliability,” in IEDM Tech. Dig., 2004, pp. 877–880. [18] K. Naruke, S. Taguchi, and M. Wada, “Stress induced leakage current limiting to scale down EEPROM tunnel oxide thickness,” in IEDM Tech. Dig., 1988, pp. 424–427. [19] S. Yamada, Y. Hyura, T. Yamane, K. Amemiya, Y. Ohshima, and K. Yoshikawa, “Degradation mechanism of flash EEPROM programming after program/erase cycles,” in IEDM Tech. Dig., 1993, pp. 23–26. [20] S. Lee, “Scaling Challenges in NAND Flash Device toward 10nm Technology,” in 2012 4th IEEE International Memory Workshop, 2012, pp. 1–4. [21] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “NROM: a novel localized trapping, 2-bit nonvolatile memory cell,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 543–545, Nov. 2000. [22] I. Bloom, P. Pavan, and B. Eitan, “NROMTM–a new non-volatile memory technology: form device and products,” Microelectron. Eng., vol. 59, no. 4, pp. 213–223, Nov. 2001. [23] A. Shappir, E. Lusky, G. Cohen, I. Bloom, M. Janai, and B. Eitan, “The two-bit NROM reliability,” IEEE Trans. Device Mater. Reliab., vol. 4, no. 3, pp. 397–403, Sep. 2004. [24] E. lusky, Y. Shacham-Diamand, I. Bloom, and B. Eitan, “Characterization of channel hot electron injection by the subthreshold slope of NROMTM device,” IEEE Electron Device Lett., vol. 22, no. 11, pp. 556–558, Nov. 2001. [25] L. Larcher, P. Pavan, and B. Eitan, “On the physical mechanism of the NROM erase,” IEEE Trans. Electron Devices, vol. 51, no. 10, pp. 1593–1599, Oct. 2004. [26] E. Lusky, Y. Shacham-Diamand, I. Bloom, and B. Eitan, “Electrons retention Model for localized charge in oxide–nitride–oxide (ONO) dielectric,” IEEE Electron Device Lett., vol. 23, no. 9, pp. 556–558, Sep. 2002. [27] W.-J. Tsai, C.-C. Yeh, N.-K. Zous, C.-C. Liu, S.-K. Cho, T. Wang, S. C. Pan, C.-Y. Lu, “Positive oxide charge-enhanced read disturb in a localized trapping storage Flash memory cell,” IEEE Electron Device Lett., vol. 51, no. 3, pp. 434–439, Mar. 2004. [28] K. Rupp, “50 years of microprocessor trend data,” Microprocessor Trend Data Repository, https://github.com/karlrupp/microprocessor-trend-data, 2022. [29] W.-Y. Lu and Y. Taur, “On the Scaling Limit of Ultrathin SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 53, no. 5, pp. 1137-1141, May 2006. [30] W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 743-745, Aug. 2007. [31] L. Esaki, “New phenomenon in narrow Germanium p-n junctions,” Phys. Rev., vol. 109, no. 2, pp. 603–604, 1958. [32] L. Esaki, “Long Journey into Tunneling,” Science, vol. 183, no. 4130, pp. 1149–1155, 1974. [33] L. Esaki, “Discovery of the tunnel diode,” IEEE Trans. Electron Devices, vol. ED-23, no. 7, pp. 644–647, Jul. 1976. [34] W. K. Shih, E. X. Wang, S. Jallepalli, F. Leon, C. M. Maziar, and A. F. Tasch. Jr., “Modeling gate leakage current in nMOS structures due to tunneling through an ultra-thin oxide,” Solid-State Electron., vol. 42, no. 6, pp. 997–1006, Jun. 1998. [35] S. H. Lo, D. A Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's,” IEEE Electron Device Lett., vol. 18, no. 5, pp. 209–211, May 1997. [36] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” J. Appl. Phys., vol. 40, no. 1, p. 278, 1969. [37] E. O. Kane, “Theory of tunneling,” J. Appl. Phys., vol. 32, no. 1, p. 83, 1961. [38] J. M. Larson and J. P. Snyder, “Overview and status of metal S/D Schottky-barrier MOSFET technology,” IEEE Trans. Electron Devices, vol. 53, no. 5, pp. 1048–1058, May, 2006. [39] S. Zhu, J. Chen, M.-F. Li, S. J. Lee, J. Singh, C. X. Zhu, A. Du, C. H. Tung, A. Chin, and D. L.Kwong, “N-type Schottky barrier source/drain MOSFET using ytterbium silicide,” IEEE Electron Device Lett., vol. 25, no. 8, pp. 565–567, Aug. 2004. [40] A. C. Seabaugh and Q. Zhang, “Low voltage tunnel transistors for beyond CMOS logic,” Proceedings of the IEEE, vol. 98, pp. 2095–2110, Dec. 2010. [41] Q. Zhang, W. Zhao, and S. A. Seabaugh, “Low-subthreshold swing tunnel transistors,” IEEE Electron Device Lett., vol. 27, no. 4, pp. 297–300, Apr. 2006. [42] By Alan C. Seabaugh, and Qin Zhang, “Low-voltage tunnel transistors for beyond CMOS logic,” Proceedings of the IEEE, vol. 98, no. 12, pp. 2095-2110, Dec. 2010. [43] TaurusTM Medici User Guide, Synopsys Inc., Mountain View, CA, Mar. 2017. [44] Sentaurus™ Device User Guide, Synopsys Inc., Mountain View, CA, USA, 2020. [45] K. Matsuzawa, K. Uchida, and A. Nishiyama, “A unified simulation of Schottky and ohmic contacts,” IEEE Trans. Electron Devices, vol. 47, no. 1, pp. 103–108, Jan. 2000. [46] M. Ieong, P. M. Solomon, S. E. Laux, H. P. Wong, and D. Chidambarrao, “Comparison of raised and Schottky source/drain MOSFETs using a novel tunneling contact model,” in IEDM Tech. Dig., 1998, pp. 733–736. [47] C.-K. Huang, W. E. Zhang, and C. H. Yang, “Two-Dimensional Numerical Simulation of Schottky Barrier MOSFET with Channel Length to 10 nm,” IEEE Trans. Electron Devices, vol. 45, no. 4, pp. 842–848, Apr. 1998. [48] C.-H. Shih and J.-T. Liang, “Nonvolatile Schottky barrier multibit cell with source-side injected programming and reverse drain-side hole erasing,” IEEE Trans. Electron Devices, vol. 57, no. 8, pp. 1774–1780, Aug. 2010. [49] J. M. Andrews and M. P. Lepselter, “Reverse current–voltage characteristics of metal–silicide Schottky diodes,” Solid-State Electron., vol. 13, no. 7, pp. 1011–1023, Jul. 1970. [50] S. Xiong, T. J. King, and J. Bokor, “A comparison study of symmetric ultrathin-body double-gate devices with metal source/drain and doped source/drain,” IEEE Trans. Electron Devices, vol. 52, no. 8, pp. 1859–1867, Aug. 2005. [51] Sze, S. M., and G. I. Gibbons. “Avalanche breakdown voltages of abrupt and linearly graded p‐n junctions IN Ge, Si, GaAs, and GaP,” Appl. Phys. Lett., vol. 8, no. 5, pp. 111-113, Aug. 1966. [52] S. Selberherr, “Analysis and simulation of semiconductor devices,” Springer Science & Business Media, 1984. [53] W. Shockley, “Problems related to p-n junctions in silicon,” Czechoslov. J. Phys., vol. 11, no.2, pp.81-121, 1961. [54] P. A. Wolff, "Theory of electron multiplication in silicon and germanium," Phys. Rev., vol. 95, no. 6, pp. 1415-1420, 1954. [55] T. Y. Chan, P.-K. Ko, and C. Hu, “A simple method to characterize substrate current in MOSFETs,” IEEE Electron Device Lett., vol. EDL-5, no. 12, pp. 505–507, Dec. 1984. [56] S. Tam, P.-K. Ko, and C. Hu, “Lucky-electron model of channel hot electron injection in MOSFET's,” IEEE Trans. Electron Devices, vol. 31, no. 9, pp. 1116–1125, Sep. 1984. [57] K. Hasnat, C.-F. Yeap, S. Jallepalli, W.-K. Shih, S. A. hareland, V. M. Agostinelli, Jr., A. F. Tasch, Jr., and C. M. Maziar, “A pseudo-lucky electron model for simulation of electron gate current in submicron MOSFET's,” IEEE Trans. Electron Devices, vol. 43, no. 8, pp. 1264–1273, Aug. 1996. [58] E. O. Kane, “Zener tunneling in semiconductors,” J. Phys. Chem. Solids, vol. 12, no. 2, pp. 181-188, Jan. 1959. [59] W. G. Vandenberghe, B. Sorée, W. Magnus, and G. Groeseneken, “Zener tunneling in semiconductors under nonuniform electric fields,” J. Appl. Phys., vol. 107, no. 5, pp. 054 520-1–054 520-3, Mar. 2010. [60] C.R.Crowell, “The Richardson constant for thermionic emission in Schottky barrier diodes,” Solid-State Electron.,vol. 8, no. 4, pp. 395-399, Apr.1965. [61] S. M. Sze, “The Physics of Semiconductor Devices,” second ed., Willey, New York, 1981. [62] M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys., vol. 80, no. 4, pp. 2234–2252, Aug. 1996. [63] K.-H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Sorée, G. Groeseneken, and K. D, Meyer, “Direct and indirect band-to-band tunneling in Germanium-based TFETs,” IEEE Trans. Electron Devices, Vol. 59, no. 2, pp. 292-301, Feb. 2012. [64] Virginia Semiconductor, “The General Properties of Si, Ge, SiGe, SiO2 and Si3N4,” June 2002. [65] D. Fleetwood, Sokrates Pantolides, and Ronald D. Schrimpf, “Defects in Microelectronic Materials and Devices,” CRC Press, 2008. [66] P. Broqvist, J. F. Binder, and A. Pasquarello, “Band offsets at the Ge/GeO interface through hybrid density functionals,” Appl. Phys. Lett., vol. 94, no. 14, p. 141911, Apr. 2009. [67] T. Mikawa, S. Kagawa, T. Kaneda, Y. Toyama, and O. Mikami, “Crystal orientation dependence of ionization rates in germanium,” Appl. Phys. Lett., vol. 37, no. 4, pp.387-389, 1980. [68] Y. Kamata, “High-k/Ge MOSFETs for Future Nanoelectronics,” Materials today, vol. 11, p. 30-38, Jan.-Feb. 2008. [69] M. Caymax, G. Eneman, F. Bellenger, C. Merckling, A. Delabie, G. Wang, R. Loo, E. Simoen, J. Mitard, B. De Jaeger, G. Hellings, K. De Meyer, M. Meuris, and M. Heyns, “Germanium for advanced CMOS anno 2009: A SWOT analysis,” in IEDM Tech. Dig., 2009, pp. 461. [70] Patrick S. Goley and Mantu K. Hudait, “Germanium Based Field-Effect Transistors: Challenges and Opportunities,” Materials, vol. 7, no. 3, pp. 2301-2339, Mar. 2014. [71] K. J. Kuhn, “Considerations for Ultimate CMOS Scaling,” IEEE Trans. Electron Devices, vol. 59, no. 7, pp. 1813–1828, Jul. 2012. [72] D. Kuzum, A. J. Pethe, T. Krishnamohan and K. C. Saraswat, “Ge (100) and (111) N and P-FETs with high mobility and low-T mobility characterization,” IEEE Trans. Electron Devics, vol. 56, no. 4, pp. 185-192, Apr. 2009. [73] Y.-C. Chou, C.-W. Tsai, C.-Y. Yi, W.-H. Chung, S.-Y. Wang, and C.-H. Chien, “Used for Neuro-Inspired-in-Memory Computing Using Charge-Trapping MemTransistor on Germanium as Synaptic Device,” IEEE Trans. Electron Devics, vol. 67, pp. 3605-3609, Sep. 2020. [74] J. Lee, B.-G. Park, and Y. Kim, “Implementation of Boolean Logic Functions in Charge Trap Flash for In-Memory Computing,” IEEE Electron Device Lett., vol. 40, pp. 1358-1361, Sep. 2019. [75] H.-K. Fang , K.-S. Chang-Liao, K.-C. Chou, T.-C. Chao, J.-E. Tsai, Y.-L. Li, W.-H. Huang, C.-H. Shen, and J.-M. Shieh, “Impacts of Electrical Field in Tunneling Layer on Operation Characteristics of Poly-Ge Charge-Trapping Flash Memory Device,” IEEE Electron Device Lett., vol. 36, pp. 1314-1317, Dec. 2020. [76] W.-H. Huang, J.-M. Shieh, C.-H. Shen, T.-E. Huang, H.-H. Wang, C.-C. Yang, T.-Y. Hsieh, J.-L. Hsieh, and W.-K. Yeh, “Junction-less poly-Ge FinFET and charge-trap NVM fabricated by laser-enabled low thermal budget processes,” Appl. Phys. Lett., vol. 108, 243502, June 2016. [77] Z.-H. Ye, K.-S. Chang-Liao, L.-J. Liu, J.-W. Cheng, and H.-K. Fang, “Enhanced Programming and Erasing Speeds of Charge-Trapping Flash Memory Device With Ge Channel,” IEEE Electron Device Lett., vol. 36, pp. 1314-1317, Dec. 2015. [78] Y. Igura, H. Matsuoka, and E. Takeda “New device degradation due to “cold” carriers created by band-to-band tunneling,” IEEE Electron Devices Lett., vol. 10, no. 5, pp. 227–229, May. 1989. [79] A. Datta, P. Bharath Kumar, and S. Mahapatra, “Dual-Bit/Cell SONOS Flash EEPROMs: impact of channel engineering on programming speed and bit coupling effect,” IEEE Electron Device Lett., vol. 28, pp. 446–448, May 2007. [80] C.-H. Shih, J.-T. Liang, and Y.-X. Luo, “Reading operation and cell scalability of nonvolatile Schottky barrier multibit charge-trapping memory cells,” IEEE Trans. Electron Devices, vol. 59, no. 6, pp. 1599–1606, Jun. 2012. [81] K. Uchida, K. Matsuzawa, J. Koga, S. Takagi, and A. Toriumi, “Enhancement of hot-electron generation rate in Schottky source metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 76, no. 26, pp. 3992–3994, Jun. 2000. [82] C.-H. Shih, W. Chang, W.-F. Wu, and C. Lien, “Multi-level Schottky barrier nanowire SONOS memory with ambipolar N- and P-channel cells,” IEEE Trans. Electron Devices, vol. 59, no. 6, pp. 1614–1620, Jun. 2012. [83] W. Chang, C.-H. Shih, Y.-X. Luo, J.-K. Hsia, W.-F. Wu, and C. Lien, “A localized two-bit/cell nanowire SONOS memory using Schottky barrier source-side injected programming,” IEEE Trans. Nanotechnol., vol. 12, no. 9, pp. 760-765, Sep. 2013. [84] J. M. Andrews and M. P. Lepselter, “Reverse current-voltage characteristics of metal-silicide Schottky diodes,” Solid-State Electron., vol. 13, no. 7, pp. 1011–1023, Jul. 1970. [85] D. H. Morris, U. E. Avci, K. Vaidyanathan, H. Liu, T. Karnik, I. A. Young, “Novel TFET circuits for high-performance energy-efficient heterogeneous MOSFET/TFET logic,” in 2017 Proc. Symp. VLSI Technology, Systems and Application, IEEE, Apr. 2017. [86] S. Ahmad, S. A. Ahmad, M. Muqeem, N. Alam, and M. Hasan, “TFET-based robust 7T SRAM cell for low power application,” IEEE Trans. Electron Devices, vol. 66, no. 9, pp. 3834–3840, Sep. 2019. [87] D. E. Nikonov and I. A. Young, “Overview of beyond-CMOS devices and a uniform methodology for their benchmarking,” Proceedings of the IEEE, vol. 101, no. 12, pp. 2498-2533, Dec. 2013. [88] A. M. Ionescu and H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, pp. 329-337, Nov. 2011. [89] H. Lu and A. Seabaugh, “Tunnel field-effect transistors: state-of-the-art,” IEEE J. Electron Devices Soc., vol. 2, pp. 44-49, Jul. 2014. [90] E.-H. Toh, G. H. Wang, G. Samudra, and Y.-C. Yeo, “Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications,” J. Appl. Phys., vol. 103, p. 104504, May 2008. [91] K. Alam, “Orientation engineering for improved performance of a Ge-Si heterojunction nanowire TFET,” IEEE Trans. Electron Devices, Vol. 64, pp. 4850-4855, Dec. 2017. [92] M. Noguchi, S.H. Kim, M. Yokoyama, O. Ichikawa, T. Osada, M. Hata, S. Takagi, ”High Ion/Ioff and low subthreshold slope planar-type InGaAs tunnel field effect transistors with Zn-diffused source junctions,” J. Appl. Phys. Vol. 118, 045712, 2015. [93] C.-H. Shih and N. D. Chien, “Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1498-1500, Nov. 2011. [94] N. D. Chien, C.-H. Shih, H.-J. Teng, and C.-K. Pham, “Dependence of short-channel effects on semiconductor bandgap in tunnel field-effect transistors,” J. Phys. Conf. Ser., vol. 1034, no.1, p. 012003, May 2018. [95] C.-Y. Hsu, C.-Y. Chang, E. Yi Chang, C. Hu, “Suppressing non-uniform tunneling in InAs/GaSb TFET with dual-metal gate,” IEEE J. Electron Devices Soc., vol. 4, pp. 60-65, Mar. 2016. [96] M.-J. Lee, W.-Y. Choi, “Effects of device geometry on hetero-gate-dielectric tunneling field-effect transistors,” IEEE Electron. Device Lett. vol. 33, pp. 1459–1461, Oct. 2012. [97] M. G. Bardon, H. P. Neves, R. Puers, and C. V. Hoof, “Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions,” IEEE Trans. Electron Devices, vol. 57, pp. 827-834, Apr. 2010. [98] L. Liu, D. Mohata, and S. Datta, “Scaling length theory of double-gate interband tunnel field-effect transistors,” IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 902-908, Apr. 2012. [99] N. D. Chien and C.-H. Shih, “Short-channel effect and device design of extremely scaled tunnel field-effect transistors,” Microelectronics Reliability, Vol. 55, pp. 31-37, Jan. 2015. [100] Y.-H. Chen, N. D. Chien, J.-J. Tsai, Y.-X. Luo, and C.-H. Shih, “Short-drain effect of 5 nm tunnel field-effect transistors,” in 2015 Silicon Nanoelectronics Workshop (SNW), 2015. pp. 57-58 [101] K. Boucart and A. M. Ionescu, “Length scaling of the double gate tunnel FET with a high-k gate dielectric,” Solid-State Electron., vol. 51, no. 11/12, pp. 1500-1507, Nov./Dec. 2007. [102] C.-H. Shih and N. V. Kien, “Sub-10-nm asymmetric junctionless tunnel field-effect transistors,” IEEE J. Electron Devices Soc., vol. 2, pp. 128-132, Sep. 2014. [103] Y.-H. Chen, H-J. Teng, C.-H. Lien and C.-H. Shih, “Device operation and physical mechanism of asymmetric junctionless tunnel field-effect transistors designed to suppress coupled short-channel/short-drain effects and promote on-current switching for ultralow-voltage CMOS applications,” Semicond. Sci. Technol., vol. 37, no.6, p. 065007, Jun 2022. [104] A. Seabaugh, “The Tunneling Transistor,” IEEE Spectrum, vol. 50, vo. 10, pp. 35-62, 2013. [105] C. Anghel, P. Chilagani, A. Amara, and A. Vladimirescu, “Tunnel field effect transistor with increased ON current, low-k spacer and high-k dielectric,” Appl. Phys. Lett. , Vol. 96, no. 12, pp. 122104-122104-3, Mar. 2010. [106] K. Boucart and A. M. Ionescu, “Double-gate tunnel FET with high-κ gate dielectric,” IEEE Trans. Electron Devices, vol. 54, no. 7, pp. 1725-1733, Jul. 2007. [107] A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken, “Tunnel field-effect transistor without gate-drain overlap,” Appl. Phys. Lett., vol. 91, no. 5, p. 053102, Jul. 2007. [108] A. Chattopadhyay and A. Mallik, “Impact of a Spacer Dielectric and a Gate Overlap/Underlap on the Device Performance of a Tunnel Field-Effect Transistor,” IEEE Trans. Electron Devices, Vol. 58, no. 3, pp. 677-683, Mar. 2011. [109] C.-H. Shih and N. D. Chien, “Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions,” J. Appl. Phys., vol. 113, pp. 134507-134507-7, Apr. 2013. [110] N. D. Chien, C.-H. Shih, and L. T. Vinh, “Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach,” J. Appl. Phys., vol. 114, pp. 094507-094507-6, Sep. 2013. [111] C.-H. Shih and N. D. Chien, “Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors,” J. Appl. Phys., vol. 115, pp. 014507-014507-7, Jan. 2014. [112] C.-H. Shih and N. D. Chien, “Design and modeling of line-tunneling field-effect transistors using low bandgap semiconductors” IEEE Trans. Electron Devices, vol. 61, no. 6, pp. 1907-1913, Jun. 2014. [113] C.-H. Shih, T.-S. Kang, Y.-H. Chen, Hung-Jin Teng and Nguyen Dang Chien, “Dopant-Segregated Metal Source Tunnel Field-Effect Transistors with Schottky barrier and band-to-band Tunneling,” in 2017 Silicon Nanoelectronics Workshop (SNW), IEEE, 2017, p. 53-54. [114] Z. Jiang, Y.-Q. Zhuang, C. Li, P. Wang and Y.-Q. Liu, “Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor,” Chin. Phys. B, vol. 25, no. 2, p. 027701, Feb. 2016. [115] S. Sant, A. Schenk, K. Moselund, and H Riel.,“Impact of Trap-assisted Tunneling and Channel Quantization on InAs/Si Hetero Tunnel FETs” in 74th Annual Device Research Conference (DRC), IEEE, Newark, DE, 2016. [116] F. Horst, A. Farokhnejad, B. Iñíguez and A. Kloes,“Closed-Form Modeling Approach of Trap-Assisted Tunneling Current for Use in Compact TFET Models” in 26th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES), IEEE,Rzeszow, Poland, 2019. [117] H. Ibach and H. Lüth, “Solid-State Physics: An Introduction to Principles of Materials Science,” Springer Science & Business Media , 2009. [118] T. Topuria, N. D. Browning and Z. Ma, “Characterization of ultrathin dopant segregation layers in nanoscale metal-oxide-semiconductor field effect transistors using scanning transmission electron microscopy,” Appl. Phys. Lett., vol. 83, no. 21, pp. 4432–4434, Nov. 2003. [119] J. Knoch, M. Zhang, Q. T. Zhao, St. Lenk, and S. Mantl, “Effective Schottky barrier lowering in silicon-on-insulator Schottky-barrier metal-oxide-semiconductor field-effect transistor using dopant segregation,” Appl. Phys. Lett., vol. 87, no. 26, pp. 263505-1–263505-3, Dec. 2005. [120] A. Kinoshita, “Dopant-segregated source/drain technology for high-performance CMOS,” in Proc. Int. Conf. Solid-State Integr. Circuit Technol., 2008, pp. 150–152. [121] A. Kinoshita, “Dopant segregated Schottky S/D and application to high performance MOSFETs,” in Proc. Int. Workshop Junction Technol., 2009, pp. 34–37. [122] Y. T. Huang, P. W. Liu, W. T. Chiang, T. L. Tsai, C. H. Tsai, C. T. Tsai, and G. H. Ma, “Schottky source/drain CMOS device optimization with dopant-segregated NiPt silicide,” in Proc. Int. Symp. VLSI Technol. Syst. Appl., 2008, pp. 38–39. [123] W.-Y Loh, P. Y. Hung, B. E. Coss, P. Kalra, Injo Ok, Greg Smith, C.-Y. Kang, S.-H. Lee, J. Oh, B. Sassman, P. Majhi, P. Kirsch, H-H. Tseng, and R. Jammy, “Selective phase modulation of NiSi using n-ion implantation for high performance dopant-segregated source/drain n-channel MOSFETs,” in VLSI Symp. Tech. Dig., 2009, pp. 100–101.
|