帳號:guest(18.188.192.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張煜典
作者(外文):Chang, Yu-Dian
論文名稱(中文):隨機電報雜訊在鰭式場效電晶體中電流擾動之研究
論文名稱(外文):The study of random telegraph noise current fluctuation in the FinFETs
指導教授(中文):連振炘
指導教授(外文):Lien, Chen-Hsin
口試委員(中文):施君興
陳建亨
口試委員(外文):Shih, Jyun-Sing
Chen, Jian-Heng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063705
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:48
中文關鍵詞:隨機電報雜訊隨機亂數產生器汲極電流擾動臨界電壓變動
外文關鍵詞:RTNID fluctuationVt variationrandom number generator
相關次數:
  • 推薦推薦:0
  • 點閱點閱:339
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,隨著網際網路的普及,透過網路對商品的交易也非常盛行,因此如何對傳輸的資料進行加密是一個非常重要的課題。而為了建立可靠的加密系統,一個不可預測的隨機亂數產生器則變得非常重要。
而隨機亂數產生器通常利用自然產生的雜訊當作訊號源,來產生不可預期的非週期亂數。有透過電路的形式如雙震盪器以及亞穩態的架構來對雜訊做處理,來產生隨機亂數。不過因為需要較龐大的電路架構,因此會有晶片面積以及功耗方面的考量;而另一種則是透過訊號源產生足夠電路判別的雜訊,透過簡單電路就能產生出隨機亂數,因此不用太大的電路面積以及低功耗等優點。
在本論文中,透過對鰭式電晶體中隨機電報雜訊特性的探討,透過將電晶體操作於低汲極電壓然後調整閘極電壓於高轉導值時來產生大的隨機電報訊號,然後可以將此訊號直接應用於產生隨機亂數中。因此可以減少後端電路設計的複雜度來達到降低電路面積以及減少功率損耗的目的,進而設計出小面積低功耗的隨機亂數產生器。
In recent years, trading goods through the Internet becomes very popular and general, make our lives more convenient. Therefore, how to encrypt the transmitted data is a very important issue. In order to create a reliable encryption system, an unpredictable random number generator is necessary.
Random number generators usually use naturally generated noise as a signal source to generate unpredictable and aperiodic random numbers. There are some methods using the theory like double oscillator and metastable architecture. However, these methods using the larger circuits may consume more power and chip area. The other way is to generate random number by the large noise signal devices, saves area and power consumption.
In this thesis, the relation between the magnitude of the random telegram noise for the drain current and the device operation parameters are found theoretically and verified experimentally. By operating the transistor at a low drain voltage and at the peak of gm, we can get the signal large enough to generate random numbers without using complex circuits, and then a random number generator with a small area and low power consumption can be designed.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 序論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 章節概述 2
第二章 文獻回顧 3
2.1 隨機亂數產生器回顧 3
2.1.1 偽隨機亂數產生器 3
2.1.2 真實隨機亂數產生器 3
2.2 鰭式場效電晶體 5
2.3 隨機電報雜訊回顧 9
第三章 量測儀器介紹與基本電性分析 16
3.1 量測儀器介紹 16
3.2 基本電性分析 18
3.2.1 N型4鰭鰭式電晶體電性量測 20
3.2.2 P型4鰭鰭式電晶體電性量測 24
第四章 隨機電報雜訊電流擾動分析 28
4.1 實驗流程 28
4.2 汲極電流擾動幅度和轉導之關聯 30
4.3 數據分析 35
4.3.1 N型4鰭鰭式電晶體電流擾動幅度分析 35
4.3.2 P型4鰭鰭式電晶體電流擾動幅度分析 38
4.4 量測結果討論 42
4.5 隨機電報雜訊擾動之應用 43
第五章 總結與未來展望 44
5.1 結論 44
5.2 未來展望 45
參考文獻 46

[1] B. Elaine, B. William, P. William, S. Miles, "Recommendation for Key Management" NIST Special Publication 800-57. NIST. 2013.
[2] S. Yasuda, H. Satake, T. Tanamoto, R. Ohba, K. Uchida, S. Fujita, “Physical Random Number Generator Based on MOS Structure”, Solid-State Circuits, IEEE Journal of, Vol.39, No. 8, pp. 1375 –1377, Aug. 2004
[3] C.S. Petrie, J. A. Connelly, “A Noise-Based IC Random Number Generator for Applications in Cryptography”, IEEE Transactions on, Vol. 47, No. 5, pp. 615 -621, May 2000
[4] M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, M. Varanonuovo, “High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications on a Smart Card ICMarco Computers”, IEEE Transactions on, Vol. 52,No. 4,pp. 403 –409, April 2003
[5] S. Srinivasan et, “A 4Gbps 0.57pJ/bit Process-Voltage-Temperature Variation Tolerant All-Digital True Random Number Generator in 45nm CMOS”, VLSI Design, 2009
[6] D.J. Kinniment, E.G. Chester, “Design of an On-Chip Random Number Generator using Metastability”, ESSCIRC,pp. 595 -598, Sept. 2002
[7] C. Tokunaga, D. Blaauw, T. Mudge, “True Random Number Generator with a Metastability-Based Quality Control”, Solid-State Circuits, IEEE Journal of,Vol.43, No. 1, pp. 78 –85, Jan. 2008
[8] S. Fujita, K. Uchida, S. Yasuda, R. Ohba, H. Nozaki, T. Tanamoto, “Si Nanodevices for Random Number Generating Circuits for Cryptographic Security”, ISSCC, 2004
[9] C.Y. Huang, W.C. Shen, Y.H. Tseng, Y.C. King, C.J. Lin, “A Contact-Resistive Random-Access-Memory-Based True Random Number Generator” IEEE ELECTRON DEVICE LETTERS, VOL. 33, NO. 8, 2012
[10] Mark Bohr and Kaizad Mistry, "Intel’s Revolutionary 22 nm Transistor Technology," 2011.
[11] D. Hisamoto, W.C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.J. King, J. Bokor, C. Hu, IEEE “FinFET—A Self-Aligned Double-Gate MOSFET Scalable to 20 nm” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 12, 2000
[12] M. J. Kirton and M. J. Uren, “Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/ƒ) noise,” Adv. Phys., vol. 38, no. 4, pp. 367–468, Jul. 1989, doi: 1080/00018738900101122.
[13] K. K. Hung, P. K. Ko, C. M. Hu, Y. C. Cheng, “Random Telegraph Noise of Deep-Submicrometer MOSFETs,” IEEE Electron Device Letters, vol. 11, pp. 90-92, 1990.
[14] N. Zanolla, D. Siprak, P. Baumgartner, E. Sangiorgi, C. Fiegna, “Measurement and simulation of gate voltage dependence of RTS emission and capture time constants in MOSFETs,” IEEE Ultimate Integration of Silicon, vol. 8, pp. 137-140, 2008.
[15] Y. Son, T. Kang, S. Park, and H. Shin, “A Simple Model for Capture and Emission Time Constants of Random Telegraph Signal Noise,” IEEE
[16] Z. Celik-Butler, P. Vasina, N. V. Amarasinghe, “A Method of Locating the Position of Oxide Traps Responsible for Random Telegraph Signals in Submicron MOSFETs,” IEEE Transaction on Electron Devices, vol. 47, pp. 646-648, 2000.
[17] S. Yang, H. Lee, and H. Shih, “Simultaneous extraction of locations and energies of two independent traps in gate oxide from four-level random telegraph signal noise,” Japanese Journal of Applied Physics, vol. 47, pp. 2606, 2008.
[18] T. Nagumo, K. Takeuchi, T. Hase, Y. Hayashi, “Statistical Characterization of Trap Position, Energy, Amplitude and Time Constants by RTN Measurement of Multiple Individual Traps,” IEEE International Electron Devices Meeting, vol. 28, pp.628-631, 2010.
[19] H. Cho, S. Lee, B. Park, H. Shin, “Extraction of Trap Energy and Location from Random Telegraph Noise in Gate Leakage Current of Metal-Oxide Semiconductor Field Effect Transistor,” IEEE Solid-State Electrons, vol.54, pp.362-367, 2010.
[20] C. M. Chang, S. Chung, Y. S. Hsieh, “The Observation of Trapping and Detrapping Effects in High-k Gate Dielectric MOSFETs by a New Gate Current Random Telegraph Noise Approach,” IEEE International Electron Devices Meeting, vol. 10, pp. 1109-1113, 2008.
[21] B. Kaczer, M. Toledano-Luque, W. Goes, “Gate Current Random Telegraph Noise and Single Defect Conduction,” Microelectronic Engineering, vol. 109, pp. 123-125, 2013.
[22] E. R. Hsieh, Steve S. Chung, “The Understanding on the Evolution of Stress-induced Gate Leakage in High-k Dielectric Metal-Oxide-Field-Effect Transistor by Random Telegraph Noise Measurement,” Applied Physics Letters, vol.107, 2015.
[23] P. Fang, K.K. Hung, P.K. KO, C. Hu, “Hot-Electron-Induced Traps Studied Through the Random Telegraph Noise” IEEE EDL VOL.12 NO.6 1991
[24] S. Lee, H. Cho, Y. Son, D. Lee, H. Shin, “Characterization of Oxide Traps Leading to RTN in High-k and Metal Gate MOSFETs,” IEDM, vol. 32, pp.763-766, 2009.
[25] D.K. Schroder, “Semiconductor material and device characterization” John Wiley, 2006
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *