帳號:guest(3.145.50.222)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王泰閔
作者(外文):Wang, Tai-Min
論文名稱(中文):側向耦合浮動金屬閘極鰭式場效電晶體之P型差動式可多次寫入記憶體元件
論文名稱(外文):P-channel Differential Multiple-Time Programmable Memory Cells by Laterally Coupled Floating Metal Gate FinFETs
指導教授(中文):林崇榮
指導教授(外文):Lin, Chrong-Jung
口試委員(中文):金雅琴
施教仁
口試委員(外文):King, Ya-Chin
Shih, Jiao-Ren
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063703
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:70
中文關鍵詞:鰭式場效電晶體P型差動式可多次寫入側向耦合
外文關鍵詞:FinFETP-channelDifferentialMultiple-TimeProgrammableLaterallyCoupled
相關次數:
  • 推薦推薦:0
  • 點閱點閱:448
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來半導體產業發展迅速,高科技電子產品的需求逐漸增加,應用也日益廣泛,為追求產品外型輕薄短小,攜帶方便,符合目前電子產品的個人化需求,將一個完整的系統包括記憶體以及周邊的邏輯電路等製作在同一個晶片上的系統單晶片(System-on-a-chip, SoC)整合製程逐漸受到重視,此製程方式能有效的減少成本與製造時間。
本論文提出一種新型的P通道可多次寫入非揮發性記憶體,其最大的特點為完全相容於16奈米CMOS鰭式場效電晶體(FinFET)的先進邏輯製程。此新型元件將互補資料儲存於兩個浮動閘極,能夠在同一顆元件中讀取電流差,並藉由接觸點與金屬閘極間的電容進行側向耦合。在製程微縮至奈米級別的現在,閘極介電層逐漸變薄造成浮動閘極儲存電子的能力不足,利用差動式結構擴大感測範圍,同時提出一個全面性的自我修復機制,當讀取範圍明顯縮小時,透過週期性的自我修復操作來解決資料保存性的問題。
新型P通道差動式記憶體元件的編程效率高,且在經過寫入抹除的循環測試後,表現出優越的穩定性與可靠性,同時擁有良好的抗干擾特性,再加上特殊的自我修復機制,能夠解決現今閘極介電層太薄引發資料流失現象而導致的可靠度問題,這些優點使此元件有較高的競爭力。
In recent years, the semiconductor technology advances rapidly. The demand for high-tech electronic products increases rapidly. People began to pursue product, which is small, light and easy-to-carry. In order to meet these needs, a system-on-a-chip (SoC) integration of a complete system including memories and logic circuits on the same chip of great interests to computation. This process can effectively reduce the cost and developmental time.
A new differential p-channel multiple-time programmable (MTP) memory cell is proposed. Its most important feature is its fully compatible with advanced 16nm CMOS FinFET logic process. This differential MTP cell stores complementary data in floating gates coupled by slot contact structure enable different read current on a single cell. In nano-scale CMOS FinFET logic processes, the gate dielectric layer becomes too thin to retain charge inside the floating gates for very long time. By using a differential architecture, the sensing window of the cell can be extended and maintained by a new blanket boost scheme. Charge retention problem in floating gate cells can be improved by periodic restoring lost charge when significant read window narrowing occurs. In addition to high programming efficiency, this p-channel MTP cells also exhibit good cycling endurance as well as disturb immunity.
摘要 i
Abstract ii
致謝 iii
內容目錄 iv
附圖目錄 vi
附表目錄 viii
第一章 序論 1
1.1 非揮發性記憶體介紹與應用 2
1.2 浮動閘極記憶體的介紹與應用 3
1.3 邏輯非揮發性記憶體簡介 4
1.4 論文大綱 4
第二章 可多次寫入記憶體之簡介 9
2.1 可多次寫入記憶體之特性與應用 9
2.2 載子注入之操作機制 10
2.3 可多次寫入記憶體回顧與發展 12
2.4 小結 13
第三章 新型P通道差動式側向耦合記憶體元件結構與操作原理 16
3.1 新型P通道記憶體元件結構介紹 16
3.2 差動式記憶體之特點與操作流程 18
3.3 新型P通道記憶體元件操作機制與原理 19
3.4 小結 22
第四章 新型P通道差動式側向耦合記憶體元件之特性分析 35
4.1 差動式記憶體元件基本操作特性分析 35
4.2 記憶體元件可靠度分析 38
4.3 可靠度最佳化及自我修復 41
4.4 N通道與P通道特性討論 43
4.5 小結 44
第五章 結論 64
參考文獻 65
[1] L.M. Dao, "Development and Challenges of the New Non-Volatile Memory, " in Nano Communication, vol. 21, no. 3.
[2] R. A. Cobley and C. D. Wright, "Spice modelling of PCRAM devices, " IEE Proceedings-Science, Measurement and Technology, Vol. 150, pp. 237-239, 2003.
[3] Y. Ma, R. Deng, H. Nguyen, B. Wang, A. Pesavento, M. Niset and R. Paulsen, "Floating Gate Nonvolatile Memory With Ultrathin 5 nm Tunnel Oxide, " IEEE Trans. Electron Devices, vol. 55, pp. 3476-3481, 2008.
[4] T. Ogura, M. Mihara, Y. Kawajiri, K. Kobayashi, S. Shimizu, S. Shukuri, N. Ajika and M. Nakashima, "Advantage of Floating Gate B4 Flash over Retention Reliability after Cycling Characterization by Variation of Transconductance, " presented at 2008 Joint Non-Volatile Semiconductor Memory Workshop and International Conference on Memory Technology and Design, pp. 16-19, 2008.
[5] B. Wang, H. Nguyen, A. Horch, Y. Ma and R. Paulsen, "Charge retention of silicided and unsilicided floating gates in embedded logic nonvolatile memory, " IEEE International Integrated Reliability Workshop, 2005.
[6] B. Wang, M. Niset, Y. Ma, H. Nguyen and R. Paulsen, "Scaling tunneling oxide to 50Å in floating gate logic NVM at 65nm and beyond, " IEEE International Integrated Reliability Workshop Final Report, pp.48-51, 2007.
[7] F. Irom and D. N. Nguyen. "Single event effect characterization of high density commercial NAND and NOR nonvolatile flash memories," IEEE Transactions on Nuclear Science, vol 54, pp. 2547-2553, 2007.
[8] P. Huang, S. Chen, Y. Zhao, B. Chen, B. Gao, L. Liu, Y. Chen, Z. Zhang, W. Bu, H. Wu, X. Liu and J. Kang, "Self-Selection RRAM Cell With Sub-μA Switching Current and Robust Reliability Fabricated by High- K /Metal Gate CMOS Compatible Technology," in IEEE Transactions on Electron Devices, vol. 63, no. 11, pp.4295-4301, Nov. 2016.
[9] W. C. Shen, C. Y. Mei, Y. D. Chih, S. S. Sheu, M. J. Tsai, Y. C. King and C. J. Lin, "High-K metal gate contact RRAM (CRRAM) in pure 28nm CMOS logic process," 2012 International Electron Devices Meeting, San Francisco, CA, 2012, pp. 31.6.1-31.6.4.
[10] C. Sung, J. Song, S. Lee and H. Hwang, "Improved endurance of RRAM by optimizing reset bias scheme in 1T1R configuration to suppress reset breakdown," 2016 IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, 2016, pp. 84-85.
[11] H. Y. Chen, H. H. Chen, Y. C. King and C. J. Lin, "Investigation of Set/Reset Operations in CMOS-Logic-Compatible Contact Backfilled RRAMs," in IEEE Transactions on Device and Materials Reliability, vol. 16, no. 3, pp. 370-375, Sept. 2016.
[12] X. Xu, Q. Luo, T. Gong, H. Lv, S. Long, Q. Liu, S. S. Chung, J. Li and M. Liu, "Fully CMOS compatible 3D vertical RRAM with self-aligned self-selective cell enabling sub-5nm scaling," 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, 2016, pp. 1-2.
[13] C. Y. Mei, W. C. Shen, C. H. Wu, Y. D. Chih, Y. C. King, C. J. Lin, M. J. Tsai, K. H. Tsai and F. T. Chen, "28-nm 2T High-$K$ Metal Gate Embedded RRAM With Fully Compatible CMOS Logic Processes," in IEEE Electron Device Letters, vol. 34, no. 10, pp. 1253-1255, Oct. 2013.
[14] B. Magyari-Köpe, L. Zhao, K. Kamiya, M. Y. Yang, K. Shiraishi and Y. Nishi, "Review on simulation of filamentary switching in binary metal oxide based RRAM devices," 2014 IEEE International Nanoelectronics Conference (INEC), Sapporo, 2014, pp. 1-3.
[15] C. Y. Mei, W. C. Shen, Y. D. Chih, Y. C. King and C. J. Lin, "28nm high-k metal gate RRAM with fully compatible CMOS logic processes," 2013 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, 2013, pp. 1-2.
[16] J. Peng, G. Rosendale, M. Fliesler, D. Fong, J. Wang, C. Ng, Z. Liu and H. Luan, "A Novel Embedded OTP NVM Using Standard Foundry CMOS Logic Technology," presented at 21st IEEE Non-Volatile Semiconductor Memory Workshop, pp.24-26, 2006.
[17] W. Y. Hsiao, P. C. Peng, T. S. Chang, Y. D. Chih, W. C. Tsai, M. F. Chang, T. F. Chien, Y. C. King and C. J. Lin, "A New High-Density Twin-Gate Isolation One-Time Programmable Memory Cell in Pure 28-nm CMOS Logic Process," IEEE Trans Electron Devices, vol. 62, pp. 121-127, 2015.
[18] Y. Roizin, E. Pikhay, V. Dayan and A. Heiman, "High Density MTP Logic NVM for Power Management Applications," presented at IEEE International Memory Workshop, pp. 1-2, 2009.
[19] C. W. Lien, H. Y. Wu, C. W. Tsai, C. M. Huang, Y. D. Chih, T. L. Lee and C. J. Lin, "A New 2T Contact Coupling Gate MTP Memory in Fully CMOS Compatible Process," in IEEE Trans. Electron Devices. 59, 1899 (2012).
[20] H. Y. Wu, C. W. Tsai, C. W. Lien, Y. D. Chih and C. J. Lin, "A High-Density MTP Cell With Contact Coupling Gates by Pure CMOS Logic Process," IEEE Electron Device, vol. 59, no. 7, pp. 1899-1905, 2012.
[21] S. Shukuri, S. Shimizu, N. Ajika, T. Ogura, M. Mihara, Y. Kawajiri, K. Kobayashi and M. Nakashima, "A 10k-Cycling Reliable 90nm Logic NVM "eCFlash" (Embedded CMOS Flash) Technology," presented at 3rd IEEE International Memory Workshop, pp.1-2, 2011.
[22] P. C. Peng, Y. Z. Chen, W. Y. Hsiao, K. H. Chen, C. P. Lin, B. Z. Tien, T. S. Chang, C. J. Lin and Y. C. King, "High-Density FinFET One-Time Programmable Memory Cell with Intra-Fin-Cell-Isolation Technology," presented at IEEE Electron Device Letters, vol. 36, pp. 1037-1039, 2015.
[23] B. Wang, H. Nguyen, Y. Ma and R. Paulsen, "Highly Reliable 90-nm Logic Multitime Programmable NVM Cells Using Novel Work-Function-Engineered Tunneling Devices," IEEE Transactions on Electron Devices, vol. 54, no. 9, pp. 2526-2530, Sept. 2007.
[24] R. S. J. Shen, M. Y. Wu, H. M. Chen and C. C. H. Lu, "A high-density logic CMOS process compatible non-volatile memory for sub-28nm technologies," presented at VLSI-Technology, 2014.
[25] A. Chen, "Emerging nonvolatile memory (NVM) technologies, " IEEE 2015 45th European Solid State Device Research Conference (ESSDERC), pp. 109-113, 2015.
[26] C. Yang, B. Liu, Y. Wang, Y. Chen, H. Li, X. Zhang and G. Sun, "The applications of NVM technology in hardware security, " IEEE 2016 International Great Lakes Symposium on VLSI (GLSVLSI), pp.311-316, 2016.
[27] C. Hu, "Lucky-electron model of channel hot electron emission," 1979 International Electron Devices Meeting(IEDM), pp. 22- 25, 1979.
[28] D. Wei, and H. A. Chan. "Joint Scheduling and Clustering to Balance Power Consumption for High-Node-Density Sensor Networks with Directional Data Traffic," IEEE International Conference on Wireless Communications, Networking and Mobile Computing, pp. 2727-2730, 2007
[29] S. Bhatnagar, V. Agrawal and R. Marwal, "Analysis of MOSFET density and reduction in power consumption of Carry Select Adder using gate diffusion input," 2016 IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), pp. 1-6, 2016.
[30] P. Y. Lin, T. H. Yang, Y. T. Sung, C. J. Lin, Y. C. King and T. S. Chang, "Self-align nitride based logic NVM in 28nm high-k metal gate CMOS technology," 2013 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, 2013, pp. 1-2.
[31] A. Misra, H. Kalita, M. Waikar, A. Gour, M. Bhaisare, M. Khare, M. Aslam and A. Kottantharayil, "Multilayer graphene as charge storage layer in floating gate flash memory," 2012 4th IEEE International Memory Workshop (IMW), 2012.
[32] S. Zhang and Y. Kuo, "Temperature Effect on Dielectric Breakdown and Charges Retention of Nanocrystalline Cadmium Selenide Embedded Zr-Doped HfO2 High-${k} $ Dielectric Thin Film," IEEE Transactions on Device and Materials Reliability (TDMR), vol. 16, 2016.
[33] K. Zhai, Q. Zhang, L. Li and W. Yu, "A 3-D parasitic extraction flow for the modeling and timing analysis of FinFET structures, " IEEE International Conference on Communications, Circuits and Systems (ICCCAS), pp.430-434, 2013.
[34] F. H. Meng, P. Y. Lin, Y. L. Chiu, B. R. Huang, C. J. Lin and Y. C. King, "Effect of three-dimensional current distribution on characterizing parasitic resistance of FinFETs," JJAP, vol. 55, no. 4S, Mar. 2016.
[35] C. L. Hsu, C. F. Liao, W. Y. Chien, Y. D. Chih, C. J. Lin and Y. C. King, "Differential multiple-time programmable memory cells by laterally coupled floating metal gate fin field-effect transistors, " JJAP, Volume 56, Number 4S, Apr. 2016
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *