帳號:guest(18.118.146.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高敏庭
作者(外文):Kao, Min-Ting
論文名稱(中文):雙閘極蕭特基能障矽鍺電荷捕捉式記憶體之研究
論文名稱(外文):The Study of the Double Gate Schottky Barrier SiGe Charge Trapping Memories
指導教授(中文):連振炘
指導教授(外文):Lien, Chen-Hsin
口試委員(中文):施君興
陳建亨
口試委員(外文):Shih, Chun-Hsing
Chen, Jiann-Heng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063701
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:59
中文關鍵詞:雙閘極結構蕭特基能障熱電子注入矽鍺
外文關鍵詞:Double gateSchottky barrierHot electron injectionSiGe
相關次數:
  • 推薦推薦:0
  • 點閱點閱:50
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著物聯網的到來,低功耗、高寫入速度的記憶體元件逐漸受到大眾消費者的關注。另外,對電晶體的通道長度做微縮的現況下,許多提升元件的效能被提出來,除了結構上的改變,改變通道材料的想法也被提出。
本論文建構出雙閘極蕭特基能障源/汲極的O-N-O電荷捕捉式記憶體,並將之與雙閘極的傳統摻雜源/汲極的O-N-O電荷捕捉式記憶體比較。發現蕭特基能障元件的注入效率較傳統型元件高出許多。另外也透過文獻的比較,來估計出兩種記憶體元件的寫入時間:在VDS為3V,VGS為6V時,蕭特基元件為45.7us;在VDS為6V,VGS為6V時,傳統元件為68.7us,速度上確實是蕭特基元件快了33%。另一方面,在同樣是雙閘極金屬蕭特基能障源/汲極的結構中,我們比較了矽通道和不同組成比例的矽鍺(Si1-xGex)通道的注入效率。發現若是固定金屬的功函數為4.27eV時,矽鍺的注入效率大於矽的注入效率,並且以x=0.7時為最高;而若是固定蕭特基能障高度為0.2eV時,則是矽通道元件擁有較高的注入效率,矽鍺通道元件的注入效率則是隨著x比例增加而減少。
Since the coming of IoT era, low power consumption, high program speed memory device gains lots of interest. Moreover, the ongoing scaling on transistor channel length results not only in new structure strategy, but also in the replacement issue of channel material.
In this thesis, we establish the structure of double gate Schottky barrier source/drain O-N-O charge trapping memory cell (SBC), and compare it with double gate conventionally doped source/drain O-N-O charge trapping memory cell (CVC). We find that SBC has higher injection efficiency than CVC does. Additionally, we also compare the above devices with some existing references, and estimate the program time. At VDS=3V, VGS=6V, the program time of SBC is 45.7us. At VDS=6V, VGS=6V, the program time of CVC is 68.7us. SBC is 33% faster than CVC. Also, in the same double gate SB source/drain structure, we compare injection efficiency between Si channel and different x ratio of Si1-xGex channel. At fixed metal workfunction m=4.27eV, injection efficiency is higher in SiGe channel, especially at x=0.7. At fixed SB height b0=0.2eV, Si channel device has higher injection efficiency, injection efficiency decrease with increasing x in SiGe channel device.
摘要 i
Abstract ii
致謝 iii
內文目錄 iv
圖目錄 vi
表目錄 viii
第1章 :序論 1
1.1 前言 1
1.1.1 浮動閘極(Floating Gate)型記憶體介紹 3
1.1.2 矽-二氧化矽-氮化矽-二氧化矽-矽(SONOS)型記憶體介紹 4
1.2 蕭特基能障金氧半場效電晶體 5
1.3 研究動機 6
1.4 論文架構 7
第2章 :電荷捕捉式記憶體的操作與物理模型 11
2.1 SONOS型快閃記憶體操作方式 11
2.1.1 福勒-諾德漢穿隧(Fowler-Nordheim Tunneling)之機制 12
2.1.2 通道熱電子注入(CHEI)之機制 15
2.1.3 帶對帶穿隧引發熱電洞注入(BBHHI)之機制 19
2.2 蕭特基能障電流穿隧之機制 21
第3章 :蕭特基能障記憶體之基本電性模擬 24
3.1 模擬軟體介紹 24
3.2 元件基本模型 27
3.2.1 單閘極元件與雙閘極元件的比較 27
3.2.2 蕭特基能障接面 30
3.2.3 雙閘極蕭特基能障型記憶體基本結構 32
3.3 雙閘極蕭特基能障記憶體的電性與寫入分析 34
3.3.1 雙閘極蕭特基能障型記憶體基本電性分析 34
3.3.2 熱電子寫入實驗設計 39
第4章 :矽鍺通道之雙閘極蕭特基能障記憶體之模擬 44
4.1 矽鍺之材料參數 44
4.2 矽通道與矽鍺通道之雙閘極蕭特基能障記憶體之基本電性比較 45
4.3 矽通道與矽鍺通道之雙閘極蕭特基能障記憶體之寫入比較 52
第5章 :總結與未來展望 54
5.1 結論 54
5.2 未來展望 55
參考文獻 56
[1] S. E. Thompson, “Moore’s Law: the Future of Si Microelectronics,” Material today, vol. 9, pp. 20-25, 2006.
[2] P. Pavan, R. Bez, P. Olivo and E. Zononi, ”Flach memory cells - an overview,” in Proceeding of the IEEE, vol. 85, no. 8, pp. 1248-1271, Aug. 1997.
[3] International Techmology Roadmap for Semiconductors, ITRS, Denver, CO, USA 2013.
[4] R. Benz, E. Camerlenghi, A. Modelli, and A. Visconi, “Introduction to Flash memory,” Proceeding of the IEEE, vol. 91, no. 4, pp. 489-502, Apr. 2003.
[5] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “NROM: a novel localized trapping, 2-bit nonvolatile memory cell,” IEEE Electron Device Letters, vol. 21, no. 11, pp. 543-545, Nov. 2000.
[6] E. Lusky, Y. Shacham-Diamand, I. Bloom, and B. Eitan, “Characterization of channel hot electron injection by the subthreshold slope of NROMTM device,” IEEE Electron Device Letters, vol. 22, no. 11, pp. 556-558, Nov. 2001.
[7] L. Larcher, P. Pavan, and B. Eitan, “On the physical mechanism of the NROM erase,” IEEE Transactions on Electron Devices, vol. 51, no. 10, pp. 1593-1599, Oct. 2004.
[8] J. M. Larson and J. P. Snyder, “Overview and status of metal S/D Schottky-barrier MOSFET technology,” IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1048-1058, May. 2006.
[9] M. Zhang, J. Knoch, J. Appenzeller, and S. Mantl, “Improved carrier injection in ultrathin-body SOI Schottky-barrier MOSFETs,” IEEE Electron Device Letters, vol. 28, no. 3, pp. 223-225, Mar. 2007.
[10] S. Zhu, J. Chen, M.-F. Li, S. J. Lee, J. Singh, C. X. Zhu, A. Du, C. H. Tung, A. Chin, and D. L. Kwong, “N-type Schottky barrier source/drain MOSFET using ytterbium silicide,” IEEE Electron Device Letters, vol. 25, no. 8, pp. 565-567, Aug. 2004.
[11] C.-H. Shih, and J.-T. Liang, “Nonvolatile Schottky barrier multibit cell with source-side injected programming and reverse drain-side hole erasing,” IEEE Transactions on Electron Devices, vol. 57, no. 8, pp. 1774-1780, Aug. 2010.
[12] C.-H. Shih, W. Chang, Y.-X. Luo, J.-T. Liang, M.-K. Huang, N. D. Chien, R.-K. Shia, J.-J. Tsai, W.-F. Wu, and C. Lien, “Schottky Barrier Silicon Nanowire SONOS Memory with ultralow programming and erasing voltages,” IEEE Electron Device Letters, vol. 32, no. 11, pp. 1477-1479, Nov. 2011.
[13] C.-H. Shih, S.-P. Yeh, J.-T. Liang, and Y.-X. Luo, “Source-side injection Schottky Barrier Flash memory cells,” Semiconductor Science and Technology, vol. 24, no. 2, pp. 025013, Feb. 2009.
[14] K. Uchida, K.Matsuzawa, J. Koga, S.Takagi, and A. Toriumi, “Enhancement of hot-electron generation rate in Schottky source metal-oxide-semiconductor field-effect transistors,” Applied Physics Letters, vol. 76, no. 26, pp. 3992-3994, Jun. 2000.
[15] C.-H. Shih, J.-T. Liang, J.-S. Wang, and N. D. Chien, “A source-side injection lucky electron model for Schottky barrier metal-oxide-semiconductor devices,” IEEE Electron Device Letters, vol. 32, no. 10, pp. 1331-1333, Oct. 2011.
[16] Chenming Hu, “Lucky-electron Model of Channel Hot Electron Emission,” IEDM Tech. Dig., pp. 22-25, 1979.
[17] S. Tam, P.-K. Ko, and C. Hu, “Lucky-electron model of channel hot electron injection in MOSFET’s,” IEEE Transactions on Electron Devices, vol. 31, no. 9, pp. 1116-1125, Sep. 1984.
[18] Yoshikawa K., Mori S., Sakagami E., Ohshima Y., Kaneko Y., and Arai N., “Lucky-hole injection induced by band-to-band tunneling leakage in stacked gate transistors,” IEDM Tech. Dig., pp. 577-580, 1990.
[19] K. Matsuzawa, K. Uchida, and A. Nishiyama, “A unified simulation of Schottky and ohmic contacts,” IEEE Transactions on Electron Devices, vol. 47, no. 1, pp. 103-108, Jan. 2000.
[20] M. Ieong, P. M. Solomon, S. E. Laux, H. P. Wong, and D. Chidambarrao, “Comparison of raised and Schottky source/drain MOSFETs using a novel tunneling contact model,” in IEEE International Electron Devices Meeting, 1998, pp. 733-736.
[21] A. R. Brown, J. R. Watling, and A. Asenov, “A 3-D atomistic study of archetypal double gate MOSFET structures,” J. Comput. Electron., vol. 1, nos. 1-2, pp. 165-169, 2002.
[22] D. A. Neamen, “Semiconductor Physics And Devices,” 4th edition, McGraw-Hill, New York, 2012.
[23] W. Chang, C.-H. Shih, Y.-X. Luo, J.-K. Hsia, W.-F. Wu, C. Lien, “A Localized Two-Bit/Cell Nanowire SONOS Memory Using Schottky Barrier Source-Side Injected Programming,” IEEE Trans. Nanotechnology, vol. 12, no. 5, pp. 760-765, Sep. 2013.
[24] D. Guo et al., “FINFET technology featuring high mobility SiGe channel for 10nm and beyond”, VLSI Technology, 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, pp. 1-2, 2016.
[25] Kao, K.-H., Verhulst, A.S., Vandenberghe, W.G., et al.: ‘Direct and indirect band-to-band tunneling in germanium-based TFETs’, IEEE Trans. Electron Dev., 2012, 59, (2), pp. 292–301
[26] R. Braunstein, A. R. Moore, and F. Herman, “Intrinsic optical absorption in germanium–silicon alloys,” Phys. Rev., vol. 109, no. 3, pp. 695–710, Feb. 1958.
[27] S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed., Wiley, New York, 1981, pp. 17, 18, 850.
[28] M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys., vol. 80, no. 4, pp. 2234–2252, Aug. 1996.
[29] S. K. Chun and K. L. Wang, “Effective mass and mobility of holes in strained Si1−xGex layers on (001) Si1−yGey substrate,” IEEE Trans. Electron Devices, vol. 39, no. 9, pp. 2153–2164, Sep. 1992.
[30] Michael E. Levinshtein, Sergey L. Rumyantsev, Michael S. Shur, “Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe,” John Wiley & Sons, Inc, New York, 2001.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *